

User’s Guide to:

DataExport Version 6

By Spalding Software, Inc.

 1986-2002 Spalding Software, Inc. All rights reserved. This manual and the software described in it are
copyrighted with all rights reserved. This publication may be reproduced for educational purposes by
licensed users only.

Trademarks
DataImport is a registered trademark of Spalding Software Inc. Brand names and product names are
trademarks or registered trademarks of their respective companies.

Printed in the USA

DataExport Version 6 Contents •• i

Contents

Chapter 1: Installation 1

Installing the DataExport/DLL Developer’s ToolKit ...1
QuickStart ...1
Step by Step Installation..1
The README.TXT File ...3

Technical Support ...3

Chapter 2: Overview 5

DataExport/DLL Developer’s ToolKit..5
Benefits ...5
Output Formats..6

Spreadsheet and Database Terminology...7
Implementation Decisions..8
DataExport/DLL Process Flow..8

Cell-by-Cell Output Method..9
File-Based Translation Method ..9

DataExport/DLL Methods..10
Querying the DLL for Supported Formats...10
Cell-by-Cell Output Functions ..10
File-Based Translation Functions...11

Chapter 3: Using DataExport/DLL 13

Building a User Interface for Selecting Output Formats ...13
Obtaining DataExport/DLL Info and User Input ..13
Querying the DLL for Supported Output Formats ...14
Required User-Defined Variables..16

Cell-by-Cell Output ...16
Methods ...16
Opening an Output File ..17
Declaring Column/Field Definitions ...17
Initializing and Clearing the Row/Record Buffer..18
Writing Cells in a Row/Record ..19
Committing a Row/Record to the Output File ...20
Closing the Output File ..21
Complete Cell-by-Cell Example ..21

File-Based Translation..23
Required Methods ..23
Raw Data File ...23
Writing an Export Definition File (EDF)...24
Running a Translation..28

ii •• Contents DataExport Version 6

Chapter 4: File Format Requirements and Limitations 31

Setting Output Limits for Your Application..31
Columns/Fields..31
Rows/Records..32

Spreadsheets ..32
Excel...32
Lotus 1-2-3..33
Quattro, Quattro Pro ...33
Symphony ..33

Databases ...34
Access ..34
dBase (Approach, FoxPro, Clipper, Alpha, xBase)...34
Clarion...35

Interchange Formats ...35
DIF Rowwise, Columnwise..35
SYLK Multiplan...35
XML 1.0 ..36

Text Formats...36
Comma Separated Values (CSV), ASCII Delimited...36
Tab Separated Values (TSV)..37
Custom Delimited (UDD)..37
Fixed Field ASCII...37
Standard Data Format (SDF)..37
Print Image (PRN), Word Processing Text ..38
HTML Table...38
Named Values ..38

Word Processing Formats ...39
Microsoft Word Mail Merge...39
WordPerfect Mail Merge ...39

Summary Table ..40

Appendix A: DataExport/DLL Methods 43

Methods for Querying Supported Formats...43
DXGetNumTypes ..43
DXEnumTypes ..44

Cell-by-Cell Output Methods..44
DXInitTrans ...44
DXDefData...45
DXPutInt...46
DXPutLong ..46
DXPutSingle...46
DXPutDouble...47
DXPutString...47
DXWriteBuffer...48
DXClearBuffer..48
DXCloseFile ...48

File-Based Translation Method ..49
DXLaunchEngine..49
Command Line Parameters ...49
Differences from the DataImport Command Line ...52

FileTypes ..52
DataTypes ..54

DataExport Version 6 Contents •• iii

StringTypes..54
CellTypes..56
UDD Strings...56
Return Codes ...56

Appendix B: EDF Statements and Format 61

EDF Format...61
Required Statements ...61
Statement Order...62
Examples ...62

EDF Statements ...64
VERSION (Required)...64
COLUMN (Required)..64
INFILE (Required in EDF or command line)..65
OUTFILE (Required in EDF or command line)..66
TITLE..66
HEADING...67
INCLUDE..67
EXCLUDE...68
PAUSE..69
RESUME...69
REFPT...70
TAG...71
UDD...71
TABLENAME..72
SHEETNAME..72
CURRENCY..73
THOUSAND ..73
DECIMAL...73
CODEPAGE..74
CUSTOMDATE...74
CENTURY...74
MONTHS..75
ADJUSTWIDTH ...75
SKIPMODE..75
STARTCELL..76
SIGNEDOP..76
EDF Statements Quick Reference ...78

Appendix C: Distribution of the DataExport/DLL Libraries 81

DataExport/DLL Distributable Files..81
Required Distribution Files ..82
Format Support Libraries..82

Index 83

iv •• Contents DataExport Version 6

DataExport Version 6 Chapter 1: Installation •• 1

Chapter 1: Installation

This chapter describes how to install DataExport/DLL on a single computer for
development purposes. Experienced PC users should read the QuickStart section to
understand the essentials of installing the ToolKit.

Installing the DataExport/DLL Developer’s ToolKit
DataExport/DLL requires an IBM or compatible PC running Windows 3.1 or above
with a minimum of 4MB RAM and 4MB of hard disk space available.

If you are an experienced PC user, you will probably want to use the instructions in
the QuickStart section when installing DataExport/DLL. If you are new to Windows,
or if you do not understand the instructions given in the QuickStart section, read
the Step by Step section and follow the outlined procedure to load DataExport/DLL.

QuickStart

Insert Disk 1 into the A: drive. Run the Setup program by switching to the Program
Manager, choosing File Run, typing “A:SETUP” and pressing OK. Follow the
instructions in the Setup program.

The installation program will copy the required files into the directory you specify.
The redistributable DLL files will be installed to your Windows system directory. See
Appendix C and the README.TXT file for more information on the DataExport/DLL
distributable files.

To use DataExport/DLL with your Windows application, you must first code for the
output of data from your application. You can pass data to the DLL using either its
Cell-by-Cell API or by using the File-Based Translation method. Refer to Chapter 2 for
further information.

Step by Step Installation

To use DataExport/DLL, you must first install the program on your hard drive using
the supplied installation program called SETUP. This program walks you through the
installation procedure by asking you where you want to install the program files,
copying the program files to your hard drive and creating a new program group.

2 •• Chapter 1: Installation DataExport Version 6

The steps below explain the procedure for using the Setup utility that is provided
with the DataExport/DLL installation disks. Follow the procedures below to install the
ToolKit on a single computer.

Note: No other programs other than Program Manager or File Manager should be
running during installation. Exit all other applications before installing
DataExport/DLL.

Procedure:

1. Switch to the Windows Program Manager.

2. Insert DataExport/DLL CD-ROM into the drive.

3. From the File menu, choose Run...

4. The Run dialog box appears. Type the letter of the disk drive and then
“:SETUP”.

Running the Setup program for DataExport/DLL

5. Press the OK button to run Setup.

The Setup program initializes and then the DataExport/DLL Setup screen appears.
The first dialog box warns that no other applications—other than Program Manager
or File Manager—should be running.

6. Press OK to continue

7. To accept the default directory and install DataExport/DLL, press the
Continue button. If you want to install DataExport/DLL to a different
directory, type in the new directory and then press Continue.

The installation begins and a dialog box indicates the progress of the
Setup program.

8. If necessary, insert additional installation disks as prompted by the
Setup program. If the Setup program asks for installation disks which
you do not have, check the original packaging before contacting
Spalding Software.

After copying files, the Setup program will build a DataExport/DLL
program group and notify you upon completion.

Note: The Setup program writes a log of the installation process called INSTALL.LOG
to the directory where DataExport/DLL is located. This log lists what files were copied
to your hard disk and where the files are located. Keep this file as a record in case you
or your system administrator needs to uninstall DataExport/DLL.

DataExport Version 6 Chapter 1: Installation •• 3

Congratulations! You have successfully completed the installation of
DataExport/DLL! Be sure to examine the README.TXT file which is discussed in the
next section.

The README.TXT File

The DataExport/DLL diskettes may contain some new information not yet added to
this manual. This information will be in a file named README.TXT. Please read this
file to get the latest information about your version of the DLL. If this file does not
exist, don’t worry; it simply means that this manual is completely up to date.

To view README.TXT information, go to the Program Manager and in the
DataExport/DLL program group, double click on the README.TXT icon. The text will
be loaded into the Windows Notepad application. You can also view the file with any
standard Windows word processor.

Technical Support
Spalding Software provides technical support for DataExport/DLL to help you solve
problems with installation and use of the program. If you have questions or problems
not addressed by this manual or the online help, your next best source of information
is our online information centers on the World Wide Web:

website: http://spaldingsoftware.com

email: dx-support@spaldingsoftware.com

If you cannot resolve the problem through the above methods, Spalding Software
provides telephone support for DataExport/DLL to help you solve problems using the
library. Before calling for support:

• Try to duplicate the problem, step by step, to see exactly what
happened and when the problem occurred.

• Be at your computer when you call. Have your manual and license
number handy.

Telephone support is available from 9 AM to 5 PM US Eastern Time (GMT -5) on
normal business days at:

+770-449-0594 voice

+770-449-0052 fax

4 •• Chapter 1: Installation DataExport Version 6

DataExport Version 6 Chapter 2: Overview •• 5

Chapter 2: Overview

This chapter explains the general purpose, benefits and use of the DataExport/DLL
Developer’s ToolKit. Spreadsheet and database terminology used in this manual is
also covered here, along with decisions to be made when implementing the DLL in
your application.

DataExport/DLL Developer’s ToolKit
The DataExport/DLL Developer’s ToolKit is a set of Dynamic Link Libraries (DLLs)
for Microsoft Windows applications. The ToolKit was created to provide developers
with a fast, easy, reliable way of exporting data from their applications into multiple
file formats—without the hassles of analyzing and coding for each format.
DataExport/DLL is designed to provide the code behind a File Export command in
your program.

Benefits

Low Learning Curve - DataExport/DLL allows you to output to multiple data formats
without requiring you to know the complexities of those formats. A simple, uniform
set of methods allows you to specify an output type and pass off your data.
DataExport/DLL takes care of the rest.

Complete Solution - At the writing of this manual, DataExport/DLL provides over 40
output formats, including the latest versions of Excel, Access and Paradox.
DataExport/DLL also covers the new and old standards, like Lotus WKS, CSV, DIF
and dBase.

Customer Satisfaction - DataExport/DLL provides an immediate and complete
resolution to this often-heard question: “Can your software output to XXX format
files?” Incorporating DataExport/DLL in your product means you can instantly
satisfy demands for output types in all major data formats. DataExport/DLL also
allows you to add impressive integration with database and spreadsheet applications.

Inter-Application Integration - In addition to creating new data files, DataExport/DLL
can also append data to existing data files, allowing you to achieve further integration
with other applications. With DataExport/DLL you can add data or results from your
program to existing databases and spreadsheets, thereby increasing communication,
saving time and improving the workflow of your customer.

6 •• Chapter 2: Overview DataExport Version 6

Output Formats

DataExport/DLL provides over 40 spreadsheet and database output formats. These
output formats allow for support of many more applications and versions than those
listed below, since many programs—especially database management apps—share
one of these common file formats. DataExport/DLL outputs formats used by these
major applications:

Application DLL FileType

Access 1.1 MDB1

Access 2.0 MDB

Access 3.0 MDB3

Access 4.0 MDB4

Alpha 4 DBF3

Approach DBF3

Clarion DAT

dBase II DBF2

dBase III DBF3

dBase IV DBF4

Excel version 2.1 XLS

Excel version 3.0 XLS3

Excel version 4.0 XLS4

Excel version 5.0 XLS5

Excel version 97/2000/XP XLS8

FoxPro DBF3

Lotus 1-2-3 release 1 and 1A WKS

Lotus 1-2-3 release 2.x WK1

Lotus 1-2-3 release 3.x WK3

Lotus 1-2-3 release 4.x and 5.x WK4

Microsoft Word data document WRD

Paradox 3.5 DB35

Paradox 4.0 DB

Quattro WKQ

Quattro Pro WQ1

Quattro Pro 5.0 for Windows WB1

SYLK Multiplan SLK

Symphony release 1.0 WRK

Symphony release 1.1, 1.2 and 2.x WR1

Word Perfect 5.0 secondary merge
file

W50

Word Perfect 5.1 secondary merge
file

W51

DataExport Version 6 Chapter 2: Overview •• 7

Spreadsheet and Database Terminology
The terminology of database and spreadsheet structures can be somewhat confusing
at times. People in the world of computers talk about “columns, cells, rows and
sheets” or “headers, fields, records and tables” depending on the kind of application
they use most frequently. At Spalding Software, we tend to use all these terms and
interchange them depending on the phase of the moon and who made the coffee that
morning.

Since the structure of a data file is of crucial importance to you, your end-user and
DataExport/DLL, it is absolutely critical that you are clear about what these terms
mean and their relationship to each other:

Cell - In the spreadsheet world, a cell refers to a single unit of data, for instance, a
single dollar amount, a street address, or a zip code. In a database, a single unit of
data is sometimes called a field. However, a field can also refer to a column of data
(see below).

Row - A horizontal line of cells containing data of different types, which usually
constitutes a set of data, for example, a line of cells containing a company name,
street address, city, state, zip code and phone number. In the database world, this set
of data is called a record .

Column - A vertical array of cells which usually contain data of the same type, for
instance, a list of companies or a list of phone numbers. In a database, a column of
data is sometimes referred to as a field.

Sheet - A collection of columns and rows which usually constitutes a complete set of
data, for example, the contact information for customer companies or the invoice log
for a sales department. Some spreadsheet formats can have multiple sheets per file. In
the database world, a sheet is structurally similar to a table in a database file.

Field - In the database world, a field either refers to a single unit of data—like a part
number—or a vertical set of data of the same type (e.g., a list of part numbers). In the
spreadsheet world, a field is equivalent to either a cell or a column of data, depending
on how it is used.

Record - A horizontal line of fields containing data of different types, which usually
constitutes a set of data, for example, a line of fields containing a company name,
street address, city, state, zip code and phone numbers. In a spreadsheet, this set of
data is called a row.

Header - A structure at the beginning of a database file that contains information
about the file, including the definition of the type of data contained in each field in
the database. Although there is no equivalent structure to a header in a spreadsheet
file, a header can be thought of as a structure that contains column definitions. This
term is used in the DataExport/DLL manual as a substitute for field definitions.

Table - A structure containing information that usually constitutes a complete set of
data, for instance, contact information for customer companies or the log of invoices
from a sales department. In dBase, a single file constitutes a table, while an Access
database file can contain multiple tables. In the spreadsheet world, a table is
structurally similar to a sheet.

This manual standardizes on the spreadsheet terms for data structures—cells,
columns and rows—for the sake of clarity. This decision requires the use of a new
term for the definition of database field, which is called a column definition in this
manual.

8 •• Chapter 2: Overview DataExport Version 6

Implementation Decisions
There are a two primary decisions that you must make when planning the
implementation of DataExport/DLL in your Windows application.

1. What programming language should I use?

2. Should I use the DataExport/DLL methods or intermediate disk files to
output data to different formats?

The first question should be easy to answer. The only requirement for the language
you use is that it must allow you to call the functions of an ActiveX DLL. Any
language will do as long as it meets this requirement.

The answer to the second question is slightly more involved. DataExport/DLL allows
you to output file formats in two different ways:

a. Cell-by-Cell output, using the DataExport/DLL methods

b. File-Based translation, using a raw ASCII data file and an Export
Definition File

Cell-by-Cell output involves communicating the data you want to output through
the functions of the DataExport/DLL methods. We assume that this option is
preferable to most programmers, since it offers the most control and does not involve
any intermediate, temporary files.

File-Based translation requires writing two temporary files—a data file and a
translation control file, or EDF—to disk and then making a single method call to
DataExport/DLL to initiate translation. This option may be preferable if you wish to
quickly adapt an existing output function—which outputs a CSV or other text file—to
output other formats.

Note: For developers using DataExport/DLL as a substitute for the translation
capabilities of DataImport, the File-Based translation method will most likely be your
choice. The Export Definition File (EDF) can provide the functions you need for
report or text file translation (See Appendix B for more information). A pre-defined
DataImport for Windows Mask file (MSK) can also be used in place of an EDF.

If you need to know more about the process of translation with DataExport/DLL,
please continue reviewing this chapter. Otherwise, you should jump to Chapter 3 and
review “Building a User Interface for Selecting Output Formats” section to find out
what user interface is needed for implementing the functions of the DLL.

DataExport/DLL Process Flow
The process of implementing DataExport/DLL in your application depends upon how
you use it. The DLL can be implemented with Cell-by-Cell output or through File-
Based translation using intermediate files containing instructions and raw data in
ASCII text format.

DataExport Version 6 Chapter 2: Overview •• 9

Diagram of DataExport/DLL data translation and output process.

The diagram above illustrates the data translation process of DataExport/DLL and
two possible implementations:

A) The Cell-by-Cell (or field-by-field) output method, which uses DataExport/DLL
methods to initialize an output file, pass data to the file and close it.

B) The File-Based Translation method, which uses an Export Definition File (EDF) to
define the final output format, a Raw Data File as a data source and a single method
call to the DataExport/DLL to perform the translation.

Cell-by-Cell Output Method

The Cell-by-Cell output method uses the DataExport/DLL methods to establish a file
output format and then communicate each unit of data to the DataExport/DLL. This
process is called Cell-by Cell output because it requires calling the DLL once for each
cell—or field in a database—that is output.

In a Cell-by-Cell implementation, the calling application begins translation using the
DXInitTrans method. The data format of each column (or field) is then specified
with DXDefData. The calling application then begins writing data for a row (or
record) to a buffer with the DXPut commands, completing each row with the
DXWriteBuffer command.

The process of passing data with the DXPut commands and writing the buffer
continues until all rows, or records, have been written. The calling application then
completes the output file with the DXCloseFile command.

File-Based Translation Method

The File-Based Translation method uses an Export Definition File (EDF) to define an
output format, a Raw Data File to communicate the data and a single method call to
initialize translation. This method of output uses the DataExport/DLL as a kind of
batch processor.

In a File-Based Translation implementation, the calling application creates an EDF
containing information about the type of output file that is desired, the column
definitions (or field definitions) and names of the files. The application also writes a
Raw Data File in a simple ASCII format to be processed by DataExport/DLL. Finally,
the calling application issues a DXLaunchEngine call to begin translation.

Information written to
the buffer is retained
until overwritten with
DXPut’s or the buffer
is cleared with
DXClearBuffer.

10 •• Chapter 2: Overview DataExport Version 6

File-Based Translation Method Using a DataImport Mask

The File-Based Translation method may also be used with a DataImport for Windows
Mask file (MSK) substituted for the EDF and, optionally, a report file or other text file
may be substituted for the Raw Data File. Developers wanting to use this method
should develop their Mask using DataImport and then follow the instructions for the
File-Based method, substituting an MSK for the EDF and, optionally, a text file for the
Raw Data File.

Refer to your DataImport documentation for more information on how to create a
Mask file for your report or other text file.

DataExport/DLL Methods
In order to use the DataExport/DLL methods, you must make a reference to the DLL in
your program. This section provides a brief review of the methods and their purpose.
Refer to Appendix A for specific syntax and prototypes for C and Visual Basic.

Querying the DLL for Supported Formats

The DataExport/DLL provides two methods which allow you to query for the number
and types of formats it currently supports. These functions are intended for dynamic
construction of dialog boxes and other communication with your program.

DXGetNumTypesW Returns the number of supported output types in
Unicode strings

DXGetNumTypesA Returns the number of supported output types in
ASCIIZ strings

DXEnumTypesW Returns output type information for a FileType,
including format name, file extension, type of file format and whether a
Sheet or Table name is required in Unicode strings

DXEnumTypesA Returns output type information for a FileType,
including format name, file extension, type of file format and whether a
Sheet or Table name is required in ASCIIZ strings

Cell-by-Cell Output Functions

There are ten methods used in a Cell-by-Cell output implementation:

DXInitTransW Initialize an output file with Unicode parameters

DXInitTransA Initialize an output file with ASCIIZ parameters

DXDefDataW Define a data format for each column with Unicode
parameters

DXDefDataA Define a data format for each column with ASCIIZ
parameters

DXPutInt Write a 2 byte signed integer to buffer

DXPutLong Write a 4 byte signed integer to buffer

DXPutSingle Write a 4 byte single precision IEEE Real to buffer

The MSK file format is a
proprietary technology
of Spalding Software and
must be created using the
DataImport program.

DataExport Version 6 Chapter 2: Overview •• 11

DXPutDouble Write a 8 byte double precision IEEE Real to buffer

DXPutStringW Write a Unicode string to buffer

DXPutStringA Write a ASCIIZ string to buffer

DXWriteBuffer Write buffer to output file

DXClearBuffer Clear data from buffer

DXCloseFile Close output file

Refer to Chapter 3 and Appendix A for more information about using these methods.

File-Based Translation Functions

There is only a single method for initialization of a File-Based Translation. This
function is similar to the command line call of another of our products: DataImport:

DXLaunchEngineW Run translation with specified Unicode
parameters

DXLaunchEngineA Run translation with specified ASCIIZ parameters

Refer to Chapter 3 and Appendix A for more information about using this API
function.

12 •• Chapter 2: Overview DataExport Version 6

DataExport Version 6 Chapter 3: Using DataExport/DLL •• 13

Chapter 3: Using DataExport/DLL

There are two distinct ways of implementing DataExport/DLL in your application:
Cell-by-Cell output, which uses the DataExport/DLL methods to define and then write
data into an output file and File-Based translation, which uses a raw data file and an
Export Definition File (EDF)—or a DataImport Mask (MSK)—to create an output file.
This chapter explains each of these output methods, as well as the user interface
requirements for use of the DLL.

Building a User Interface for Selecting Output Formats
Unless you are using the DLL for purely internal functions, some user interface will
be needed in order to implement the functions of DataExport/DLL. The DLL does not
provide a user interface—you must construct an interface in the style of your
application.

DataExport/DLL allows you to query and retrieve information about the supported
output formats and their characteristics. We recommend using this resource to
dynamically build your dialog boxes at run-time, rather than hard-coding them. This
implementation will allow you to easily accommodate new output formats as they are
added to the DataExport/DLL. If you automate the interface construction and
communication of data properly, adding new formats to your application should be as
simple as dropping a new version into your program’s folder.

Obtaining DataExport/DLL Info and User Input

Before you start outputting file formats with DataExport/DLL , there are a few
questions you need to answer:

1. What file formats does my version of the DataExport/DLL support and
what are the characteristics of those formats?

2. What is the format, filename and path for the output file?

The first question can be answered by DataExport/DLL itself using the
DXGetNumTypes and DXEnumTypes methods. Assuming you have written a routine
to dynamically construct a dialog box for your user, you need to obtain this
information to setup your dialog(s).

The second question is then answered through interaction of your user with the
dialog box you have assembled from the information obtained in the previous step.

14 •• Chapter 3: Using DataExport/DLL DataExport Version 6

Once the user has provided the required input, you are ready to start outputting a
new data file.

Querying the DLL for Supported Output Formats

DataExport/DLL provides two methods which allow you to query for the number and
types of formats it currently supports. These methods allow you to dynamically
construct a File Export dialog box at runtime.

DXGetNumTypes Returns number of supported output types

DXEnumTypes Returns pointers to information about a specified
FileType, including format name, file extension, type of file format and
whether a Sheet or Table name is required

In order to use this resource, simply query the component when your application
loads or when a user selects the File Export command (or equivalent) and build the
output file list and information for format-conditional input variables (e.g., TableName
requirements)

Code Examples: Querying for Output Formats

These sample routines get the number of types in the DataExport/DLL and populate
arrays with information about what types are available. These arrays could be used to
populate a dialog and provide a pull-down list for the user.

Visual Basic Example: Using DXGetNumTypes and DXEnumTypes

Sub GetTransTypes ()

 Dim I&, TypeFlag&, NameFlag&, MaxTypes&, RetVal&

 Dim DX as DataExport

 Set DX = New DataExport

 ' get the number of translation types available
 MaxTypes = DX.DXGetNumTypes()

 ' dimension the arrays that will hold information
 ' about the types

 ReDim TypeExt$(MaxTypes)

 ReDim TypeName$(MaxTypes)

 ReDim TypeofTrans$(MaxTypes)

 ' loop through all types and get the information
 For I = 1 To MaxTypes

 RetVal = DX.DXEnumTypesW(I, _ó
 TypeName(I), _ó
 TypeExt(I), _ó
 TypeofTrans(I), _ó
 TypeFlag, _ó
 NameFlag)

 Next I

DataExport Version 6 Chapter 3: Using DataExport/DLL •• 15

End Sub

C Example: Using DXGetNumTypes and DXEnumTypes

#include "dxtrans.h"

int GetTransTypes (void)

{

 /* set up the buffers for returned information */

 char NameBuff[40];
 char ExtBuff[4];
 char TypeBuff[10];
 int MaxTypes;
 int TransType;
 int NameNeeded;
 int i;

 /* get the number of translation types in DLL */

 MaxTypes = DXGetNumTypes();

 for (i = 1; i <= MaxTypes; i++) {

 result = DXEnumTypes(i, NameBuff, ExtBuff,
 TypeBuff, &TransType, &NameNeeded);

 /* store the returned values into arrays or
 other structures */

 }

}

The ó symbol in the Visual Basic examples indicates a continuation of the same line
appears on the next line.

See Appendix A for the command syntax and prototypes for C and Visual Basic for
these output format query functions.

Note: These routines do not create an array with the information for the NameNeeded
parameter of the DXEnumTypes function (This parameter is only relevant for Access,
Excel 5.0 and other output file types that use names for sheets or database tables). In
your code, you should either have the user supply a name, assign a default name in
your application or allow DataExport/DLL to use its default sheet and table names,
“Sheet1” and “Table1”, respectively, to support these formats.

With the array values obtained from these routines, you can build dialog boxes or
store this information for future use. The next step in this process is to obtain user
input about the name and type of output file that is desired.

16 •• Chapter 3: Using DataExport/DLL DataExport Version 6

Required User-Defined Variables

You will typically need a dialog box where the user can specify these minimum
parameters:

1. Output file format (Access, Excel, dBase, etc.)

2. Filename and path

Note that Access and Excel 5.0 formats can require additional information. For
example, for Access output, you can specify the name of a Table you will be writing
in the database file (DataExport/DLL uses a default name of “Table1” if none is
specified).

In order to accommodate the different requirements for each file format, we suggest
creating a dynamic dialog box which displays or removes input options depending
upon the type of output file selected. The following input variables should be
provided in this dialog box when the indicated format is chosen:

Table Name - for Access databases

Sheet Name - For Excel 5.0 spreadsheets

If no names are specified DataExport/DLL provides a default name of “Table1” for
Access tables and “Sheet1” for Excel 5.0 sheets. See Chapter 4 for more information
on output file formats.

Cell-by-Cell Output
Cell-by-Cell output is performed through the DataExport/DLL, by first initializing an
output file, defining the columns/fields in the output file, writing data to a buffer one
row/record at a time and then closing the output file. This section further explains the
implementation of the Cell-by-Cell output method.

Methods

There are ten Methods used in a Cell-by-Cell output implementation:

DXInitTrans* Initialize an output file

DXDefData* Define data format for each column

DXPutInt Write a 2 byte signed integer to buffer

DXPutLong Write a 4 byte signed integer to buffer

DXPutSingle Write a 4 byte single precision IEEE Real to buffer

DXPutDouble Write a 8 byte double precision IEEE Real to buffer

DXPutString Write a zero delimited string to buffer

DXWriteBuffer* Write buffer to output file

DXClearBuffer Clear data from buffer

DXCloseFile* Close output file

* These functions must be used to create an output file when using Cell-by-Cell
output with DataExport/DLL.

DataExport Version 6 Chapter 3: Using DataExport/DLL •• 17

Refer to Appendix A for specific syntax and prototypes for C and Visual Basic. The
following sections explain the use of these functions through an example
implementation of DataExport/DLL . These examples assume that you have properly
declared these functions as detailed in Appendix A.

Opening an Output File

DataExport/DLL can create a new output file or write to an existing file. In either case,
outputting to a data file always begins with the DXInitTrans function call.

DXInitTrans(FileName, FileType, TableName, NumCol,
IfExistFlag, handle)

This function returns a handle that is used with all subsequent DX calls and
establishes the fundamental structure of the output file, including the file name, the
file type, sheet/table name (if required) and number of columns (or fields). The
DXInitTrans command also specifies whether to overwrite or append data if the
specified output file exists (IfExistFlag).

Note: If you are writing data to an existing file, you must use the format of that file in
your output definitions.

Declaring Column/Field Definitions

Once the output file has been opened with the DXInitTrans command, the next step
is to establish the column definitions, or field types. Column definitions are an
exceedingly important consideration when outputting to a database file, since writing
the wrong kind of data into a field can cause serious errors in the database.

DXDefData (handle, Index, DataType, DataWidth,
DataDecimal, DataName)

One DXDefData call per column is required (e.g., for a 5 column/field output file
DXDefData is called 5 times). Each call specifies the type of data within the column
being defined (DataType), the character width of all cells within that column
(DataWidth), any implied decimals and the name of the column/field.

The DataType parameter is particularly important, since it defines what kind of data
will be accepted by DataExport/DLL when you write data to the buffer with the DXPut
commands. The primary distinction between data types is whether the data is numeric
or an alphanumeric string. DataTypes are further distinguished between the size of
the string and ‘special’ values, specifically date and time values. See “Writing Cells in
a Row/Record” below and “DataTypes” in Appendix A for more information.

The DataWidth is also an important parameter since it defines the maximum number
of characters that will be accepted in a cell or column. DataExport/DLL will truncate
strings that exceed the maximum defined width of a column when outputting to
databases, SDF and fixed field files. Proper use of the DataWidth parameter requires
that you know the maximum character width of any cell you will write to a column.

Code Example: Opening and Defining an Output File

The following routines initiate an dBase IV output file and define three columns/fields
in the output file.

Visual Basic Example: Opening and defining an output file with the DXInitTrans
and DXDefData functions

18 •• Chapter 3: Using DataExport/DLL DataExport Version 6

Sub DoCellTrans (ByVal DX as DataExport)

 ' This partial routine initializes a new output
 ' file and defines three columns.

 Dim FileName$, FileType$, hTable&, Result&

 ' FileName and FileType could easily be passed
 ' from the main program, as well as the data

 FileName$ = "c:\dx\demtext.dbf"

 FileType$ = "DBF4"

 ' start up the translation engine and get back
 ' the hTable

 result = DX.DXInitTransW(FileName, FileType, _ó
 "", 3, 1, hTable)

 ' define the columns/fields of the data

 Result = DX.DXDefDataW(hTable, 1, _ó
 DXData_Date, 8, 0, "DATE")

 Result = DX.DXDefDataW(hTable, 2, _ó
 DXData_Text, 12, 0, "CITY")

 Result = DX.DXDefDataW(hTable, 3, _ó
 DXData_General, 12, 3, "UNITS")

 ' clear out the buffer

 ' write rows/records (DXPut functions)

 ' close output file (DXCloseFile)

End Sub

See Appendix A for the syntax these output format query methods.

Note that the preceding examples do not show writing data to the DataExport/DLL
buffer. This procedure is covered in the next example.

Initializing and Clearing the Row/Record Buffer

After the output file type and structure have been established, the DXClearBuffer
function is used to initialize and clear out the DataExport/DLL buffer.

DXClearBuffer(handle)

This buffer is essentially a chalk board where the data for the output file is written.
The buffer has a numbered cell for each column/field defined by the previous
DXDefData functions. The buffer can hold one row/record at a time, so DXPut
commands must be followed by a DXWriteBuffer to complete a row/record and
commit it to the output file before writing a new row/record.

The DataExport/DLL buffer also remembers the last row/record that was written to it,
so the previously written row information remains in the buffer until it is overwritten

DataExport Version 6 Chapter 3: Using DataExport/DLL •• 19

or cleared out. The DXPut functions overwrite any data currently in the specified
cell—essentially wiping the cell clean before writing the new information. The
DXClearBuffer command, however, can be used to wipe out all information in all
cells in the buffer.

The DXClearBuffer function is only required to initialize the buffer and clear it out
before beginning writing rows/records in a new output file. The command is not
required in any subsequent action on that file. See Appendix A for syntax and more
information.

Writing Cells in a Row/Record

After establishing column/field definitions using the DXDefData function, you can
then begin writing data to the new output file using the DXPut functions. One DXPut
function is used for each cell/field that is written to the buffer; so, for a 5 column
output file, five DXPut calls are made to write data for that row/record. Each
row/record is written separately. The DXPut commands are listed below:

DXPutInt(handle, Index, Value)
Write a 2 byte signed integer to buffer

DXPutLong(handle, Index, Value)
Write a 4 byte signed integer to buffer

DXPutSingle(handle, Index, Value)
Write a 4 byte single precision IEEE Real to buffer

DXPutDouble(handle, Index, Value)
Write a 8 byte double precision IEEE Real to buffer

DXPutString(handle, Index, Value, DataType)
Write a zero delimited string to buffer

Which DXPut function you use primarily depends upon how the data is stored in
your application. For example, if you are storing a numeric value in your application
as a single precision IEEE Real, then you would write that data using the
DXPutSingle function. In general, you should use the DXPut function which best
reflects the way your data is stored in your application.

Typically, the DXPut function you use will also match the definition of the column to
which you are writing, for instance, writing a Long Integer (DXPutLong) to a Long
Integer column (column defined with a DataType of DXData_LONG). However,
DataExport/DLL will fix-up inappropriate Put values to match the definition of a
column. For example, the DLL will change a short integer into a long integer if it is
being written to a long integer column. There are some obvious limitations to the
fixing up the DLL can do, for instance writing a string “George” to a Boolean
column—or any numeric column—will cause DataExport/DLL to write a zero value to
the cell.

The following code shows some examples of DXPut commands. See Appendix A for
complete function syntax and prototypes:

Visual Basic Example: DXPut commands

 result = DX.DXPutString(hTable, 1, _ó
 "12-01-95", DXString_Date_MDY)

 result = DX.DXPutString(hTable, 2, _ó
 "Atlanta", DXString_Text)

Note: that DataExport/DLL
will not return an error if it
is required to fix-up a
DXPut value.

20 •• Chapter 3: Using DataExport/DLL DataExport Version 6

 result = DX.DXPutSingle(hTable, 3, 5000.0, 3)

In general, any DXPut function can be used to write to any defined column, however,
this will not always produce desired results. The chart below shows the most
appropriate DXPut function to use, based on the DataType definition of the column
you are writing to:

Column/Field
DataType
Setting

Appropriate
DXPut Command

Appropriate
StringType

DXData_GENERAL DXPutString StringType:

DXString_Default

DXData_BOOLEAN DXPutInt None

DXData_BYTE DXPutInt None

DXData_INTEGER DXPutInt None

DXData_LONG DXPutLong None

DXData_CURRENCY DXPutSingle None

DXPutDouble None

DXData_SINGLE DXPutSingle None

DXData_DOUBLE DXPutDouble None

DXData_DATE DXPutString StringTypes:

DXString_Date_MDY

DXString_Date_DMY

DXString_Date_YMD

DXString_Date_MY

DXString_Date_YM

DXString_Date_YD

DXData_TEXT DXPutString StringTypes:

DXString_Text

DXString_Lowercase

DXString_Uppercase

DXString_Caps

DXData_TIME DXPutString StringType:

DXString_Time

See Appendix A for more information about the DXPut functions, DataTypes and
StringTypes.

Committing a Row/Record to the Output File

After writing data to the DataExport/DLL buffer a row/record is completed by sending
a DXWriteBuffer command to the DLL. This command completes the row/record
and commits the current buffer to the output file.

DXWriteBuffer(handle)

DataExport Version 6 Chapter 3: Using DataExport/DLL •• 21

A row/record is not automatically written to the output file after the last buffer cell is
filled. Only the DXWriteBuffer function commits the current buffer information to a
file. Sending this command does not ‘clear out’ the buffer; information in the buffer is
simply copied to the output file. This architecture allows re-use of the current data in
the creation of subsequent rows/records.

Closing the Output File

When you have finished writing data to an output file, the file must be completed
using the DXCloseFile command. This function closes the output file and releases
the DataExport/DLL buffer resources. After this command is issued, a new output file
can be started using the DXInitTrans command.

DXCloseFile(handle)

Note: The component stays loaded until your application closes or you specifically
unload the module.

Complete Cell-by-Cell Example

This section shows a complete routine for writing to an output file, not including
querying of the DLL and user interface.

Visual Basic Example: Complete Cell-by-Cell output routine

' You must have added the file DXTRANS.VB to your
' project to have the declarations and constants
' available.

Option Explicit

Global MaxTypes&, FileOutputType&, TypeExt$(), ó
 TypeName$(), TypeofTrans$()

Sub DoCellTrans ()

 ' This routine initializes a new output file,
 ' defines three columns, writes two records and
 ' closes the file.

 Dim FileName$, FileType$, hTable&, result&

 ' FileName and FileType could easily be passed
 ' from the main program, as well as the data.

 FileName$ = "d:\di\demtext.dbf"

 FileType$ = "DBF4"

 ' start up the translation engine and get back
 ' the hTable

 result = DX.DXInitTransW(FileName, FileType, "", ó
 3, 1, hTable)

22 •• Chapter 3: Using DataExport/DLL DataExport Version 6

 ' define the columns/fields of the data

 result = DX.DXDefDataW(hTable, 1, DXData_Date, 8, ó
 0, "DATE")

 result = DX.DXDefDataW(hTable, 2, DXData_Text, ó
 12, 0, "CITY")

 result = DX.DXDefDataW(hTable, 3, DXData_General, ó
 12, 3, "UNITS")

 ' clear out the buffer

 result = DX.DXClearBuffer(hTable)

 ' put info into buffer for first record

 result = DX.DXPutStringW(hTable, 1, "12-01-95", ó
 DXString_Date_MDY)

 result = DX.DXPutStringW(hTable, 2, "Atlanta", ó
 DXString_Text)

 result = DX.DXPutSingle(hTable, 3, 5000.0, 3)

 ' write the buffer for the first record to disk

 result = DX.DXWriteBuffer(hTable)

 ' clear out the buffer

 result = DX.DXClearBuffer(hTable)

 ' put info into buffer for second record

 result = DX.DXPutStringW(hTable, 1, "2-14-95", ó
 DXString_Date_MDY)

 result = DX.DXPutStringW(hTable, 3, "New York", ó
 DXString_Text)

 result = DX.DXPutSingleW(hTable, 7, 500.0, 3)

 ' write buffer for the second record to disk

 result = DX.DXWriteBuffer(hTable)

 ' close the table handle

 Call DXCloseFile(hTable)

End Sub

Refer to Appendix A for complete function syntax and prototypes.

DataExport Version 6 Chapter 3: Using DataExport/DLL •• 23

File-Based Translation
A File-Based Translation uses two disk files to create an output file: one for a data
source and one to control the creation of the new file. The translation process also
requires one method call to the DataExport/DLL to initiate and perform the translation.
This method is most useful when your application already has a routine to export a
CSV, fixed field file or print an ASCII report to disk.

Two files are required for a file-based translation: a raw data file which contains the
data to be translated and a control file which describes the type and structure of the
output file and, optionally, how to read the source file.

Note: For developers’ using DataExport/DLL as a substitute for DataImport’s
translation capabilities, the raw data file can be any ASCII text report. In addition, you
can use either a pre-defined DataImport Mask (MSK) file or an EDF to control
translation of the report file. Except for these substitutions, you should use the DLL
as described in this section.

Required Methods

There is only one method required, DXLaunchEngine, in a File-Based Translation
with DataExport/DLL. This function is used to initiate the translation process and
pass required parameters to the DLL. For more information, see “Running a
Translation” below.

Raw Data File

The creation of a raw data file, or input file, is done in the code of your program, using
any routines you choose. The file can also be provided by another application. The
format of the file should be either a Comma Separated Variable (CSV) ASCII file or a
fixed field ASCII file with carriage return/line feeds at the end of each record. Tab
Separated Variable (TSV) files and ASCII files with other delimiters can also be used.
See “INFILE Statement” section below for more information.

Comma Separated Variable (CSV) format

A CSV format file uses commas “,” to separate cells/fields and encloses strings in
quotation marks <">. Each record ends with a carriage return/line feed.

"400-234-242399","SMITH, RONALD","Y","MEDTECH ó
INDEMNITY","HMDSR88900-9980",.4903,"H. ó
NORMAND","HBST1","HBSTC3","Y"

"845-538-546839","DEAN, CHRISTINA","Y","ENSURE ó
MEDICAL","CYMD800-5480",.5431,"H. NORMAND",ó
"RCVN04","RCTRZ2","Y"

Fixed Field ASCII format

In a fixed field file, each column/field is a fixed number of characters wide, regardless
of the information contained in the cells of the column. Each record ends with a
carriage return/line feed. This format should not be confused with a fixed length
format, which is similar but lacks the carriage return/line feed character to delimit
rows/records.

24 •• Chapter 3: Using DataExport/DLL DataExport Version 6

400-234-242399 SMITH, RONALD YMEDTECH INDEMN

845-538-546839 DEAN, CHRISTINA YENSURE MEDICAL

^ ^ ^^

Note: For developers’ using DataExport/DLL as a substitute for DataImport’s
translation capabilities, the raw data file can be any ASCII text report.

Writing an Export Definition File (EDF)

The EDF is used to control the translation of a raw data file or report, including the
name and type of output file to be written, the structure of the output file and how the
data is formatted. This control file is required for any file-based translation with
DataExport/DLL.

The EDF is a simple ASCII file that tells DataExport/DLL how to translate the raw
ASCII data file, whether it is a CSV or fixed fielded text file. An EDF contains one
statement (STATEMENT=) per line. The following statements are required for most EDF
files:

VERSION= specifies version of the EDF format used

COLUMN= specifies each column definition, in sequence

INFILE= specifies the input file

OUTFILE= specifies the output file

At the minimum, the EDF contains its format version number (VERSION=X.X) and
definitions of the columns/fields (COLUMN=) to be created in the output file. The EDF
format is described in detail in Appendix B. This section of the manual explains the
format of the typical EDF file which will translate either a CSV or a fixed field ASCII
file.

Note: For developers’ using DataExport/DLL as a substitute for DataImport’s
translation capabilities, you can use either a pre-defined DataImport Mask (MSK) file
or an EDF for your translation process. Refer to the “Report Translation Statements”
section below for more information about using the EDF format to translate a report
file.

Version Statement

The EDF format requires a version statement at the beginning of the file to tell
DataExport/DLL how to read the file. For the format described in this manual, the
version number is 1.0. Be sure to review the README.TXT file for any changes to
the EDF format and subsequent version number changes. Assuming you are using
version 1.0 of the EDF format, your version statement should read:

VERSION=1.0

This statement must be the first line of your EDF in order for the DLL to read the file
definitions. If this statement is placed anywhere else in the EDF, DataExport/DLL will
not be able to read the file.

Column Definitions

The EDF must contain information about the structure of the output file to be written,
specifically the definition of the columns to be output. If you are using a fixed field

DataExport Version 6 Chapter 3: Using DataExport/DLL •• 25

ASCII file as you raw data file, the EDF must also contain information about how to
read the input file.

If you are using a CSV file as your input file, your EDF file must contain COLUMN
statements: one statement for each column/field that you want to create from your
CSV file. The syntax for a column statement is shown below:

Syntax: COLUMN=width[,startpos[,type[,dup ó [,"name"]]]]

The width parameter is the only required parameter for this statement however, there
are some recommendations which you should consider, depending on the file format
you are using for your input file.

CSV Input Files

With a CSV file, COLUMN statements are applied to the input file in the order that the
column/fields appear. In other words, the first COLUMN statement is applied to the
first field of all records in the CSV file, the second statement is applied to the second
field, etc.

Each COLUMN statement should contain three items: a maximum character width for
the output column (width), the type of data (type) and the name for the column/field
("name").

COLUMN=width,,type,,"name"

The width parameter tells DataExport/DLL how wide to make the column/field in the
output file you are defining. Proper use of the width parameter requires that you
know the maximum width—in number of characters—of data items in the column.

The type of data indicates whether the data is numeric, text or another format. The
type number corresponds to the StringType codes described in the “StringTypes”
section of Appendix A.

The name parameter is not required for all output formats, but we recommend you
provide a column/field name for all output formats. This measure will provide
consistency and avoid output errors when the parameter is required.

Fixed Field Input Files

Each COLUMN statement for a fixed field input file should contain four items: a
maximum character width for the output column (width), the starting position of a
column in the input file (startpos), the type of data (type) and the name for the
column/field ("name").

COLUMN=width,startpos,type,,"name"

A fixed field file requires one more parameter than a CSV file for each COLUMN
statement: the startpos parameter. This parameter specifies the beginning of a
column in the input file.

With a fixed field file, the order of the COLUMN statements is the order that that the
columns/fields will appear in the output file. However, since you can specify which
column to read in the input file using the startpos parameter, the actual order of the
columns in the output file need not be the same as that of the input file. For example,
the first COLUMN statement in your EDF could specify a startpos of 40, which
might be the beginning of the third column in your input file. In which case, the third
column of you input file will be the first column of your output file. Thus, the
startpos parameter and the order of the COLUMN statements allows you to re-
arrange the order of you columns in the output file.

26 •• Chapter 3: Using DataExport/DLL DataExport Version 6

The width parameter tells DataExport/DLL how wide to make the column/field you
are defining in the output file. Proper use of the width parameter requires that you
know the maximum width—in number of characters—of data items in the column.

The type of data indicates whether the data is numeric, text or another format. The
type number corresponds to the StringType codes described in the “StringTypes”
section of Appendix A.

The name parameter is not required for all output formats, but we recommend you
provide a column/field name for all output formats. This measure will provide
consistency and avoid output errors when the parameter is required.

Input and Output file

In order for DataExport/DLL to perform a translation, it must know the name and
location of the input file, and the name, location and output type of the output file. In
a file-based translation, this information is provided one of two ways:

1. Using INFILE and OUTFILE statements in the EDF.

2. Using parameters in the CmdLine string when calling the
DXLaunchEngine function.

We suggest always including the INFILE and OUTFILE parameters, since writing an
EDF is required for a file based translation and because this option defines a ‘default’
input and output file. The input and output statements in the EDF can then be
overridden with a CmdLine parameter in the DXLaunchEngine call.

INFILE Statement

The INFILE statement specifies the name and path of the input file, or raw data file,
you are using for your file-based translation.

Syntax: INFILE="string"[,fielddel#,stringdel#]

The string parameter specifies the file name and path of the input file. This
parameter is the only required item if you are using a fixed field input file.

If you are using a standard CSV file as your input file with a comma “,” separating
each cell/field and straight quotation marks <"> around text fields, then the string
parameter is all that is required. However, if your input file uses non-standard
delimiters or is a Tab Separated Variable (TSV) file, then you must specify the
delimiters for cells/fields and the text string delimiters.

Both the field delimiter (fielddel#) and string delimiter (stringdel#) are specified
as ASCII numbers (e.g., 9 for a Tab).

Examples:

For a typical tab delimited ASCII file named TAB-DELM.TXT the INFILE statement
would be:

INFILE="c:\data\tab-delm.txt",9

For an ASCII file named SC-DELM.TXT and with semicolons “;” separating fields
and apostrophes “ ' ” delimiting text fields, the INFILE statement would be:

INFILE="c:\data\sc-delm.txt",59,39

OUTFILE Statement

The OUTFILE statement specifies the name, path and file format of the output file of
your file-based translation.

DataExport Version 6 Chapter 3: Using DataExport/DLL •• 27

Syntax: OUTFILE="string","filetype"

The string parameter specifies the file name and path of the output file. This
parameter is required for a CSV or fixed field file translation.

The filetype parameter specifies the file format of the output file in a FileType text
code. This parameter is required for a CSV or fixed field file translation. See
“FileTypes” in Appendix A for more information.

Example EDF

The following is a sample EDF for translating a CSV file called TEXTFILE.CSV with
four fields into a Access 2.0 file:

VERSION=1.0

INFILE="c:\data\textfile.csv"

COLUMN=6,,1,,"Cust#"

COLUMN=40,,1,,"Company"

COLUMN=20,,0,,"AmountOwed"

COLUMN=8,,3,,"Date"

OUTFILE="c:\data\textfile.mdb","MDB"

TABLENAME="Outstanding Invoices"

Notice that the first column—Cust#—is defined as a text field (1 = DXString_Text),
this is to make sure any leading zeros in the customer numbers are retained.

The TABLENAME statement is not required, but can be included if you wish to
provide a name for the table in Access. If no name is specified, DataExport/DLL
provides a name of “Table1”.

Special Function Statements

There are many more statements in the EDF which can be used to translate text files.
However, unless you are using DataExport/DLL as a substitute for DataImport’s
translation capabilities, many of these features will not be of use to you. There are a
few statements, however, that you may find useful:

TABLENAME= specifies table name for Access output files

SHEETNAME= specifies sheet name for Excel 5.0 output files

CURRENCY= defines currency symbol (default = “$”)

THOUSAND= sets thousands symbol (default = “,”)

DECIMAL= sets decimal symbol (default = “.”)

CODEPAGE= sets ASCII code page (default = 437)

CUSTOMDATE= sets interpretation of non-delimited dates

CENTURY= sets interpretation of two-digit years

MONTHS= sets month names (default is US month names)

More information about these statements is available in Appendix B.

28 •• Chapter 3: Using DataExport/DLL DataExport Version 6

Report Translation Statements

For developers using DataExport/DLL as a substitute for DataImport’s translation
capabilities, these statements allow you to use the special features of a Mask
definition:

TITLE= defines title lines in input file

HEADING= defines column headings in input file

INCLUDE= includes only specified lines in translation

EXCLUDE= excludes specified lines from translation

PAUSE= stops translation of lines

RESUME= re-starts translation of lines

REFPT= defines a Reference Point

TAG= defines a Line Tag

ADJUSTWIDTH= adds a space to output columns

SKIPMODE= turns on/off line skip mode

STARTCELL= defines first spreadsheet cell to write to

SIGNEDOP= defines Signed Overpunch characters

For more information about these statements, refer to Appendix B in this manual and
the Users Guide and Reference Manual for DataImport.

Running a Translation

After a raw data file and an EDF have been written to disk, the DXLaunchEngine
function is used to run the translation. At the minimum, this call specifies the name
and path where the EDF (or MSK) is located.

DXLaunchEngine (CmdLine)

The CmdLine parameter is essentially a way to pass command line-like switches to
the DataExport/DLL. At the minimum, this parameter contains the file name and path
of the EDF to be used in the translation.

CmdLine = (filter[,[input],[output],[type],
[display],[confirm]] [/A] [/C] [/R] [/K] [/S[=f[,s]]])

If you followed the recommended EDF implementation—see “Writing an Export
Definition File (EDF)” above—then you should only have to be concerned with these
parameters:

filter specifies the full name and path of the EDF (or MSK file)

/A set translation to append data if there is an existing file
(default is to overwrite an existing file)

/R delete the EDF or MSK file upon completion

/K delete the input file upon completion

See “File-Based Translation Methods” in Appendix B for more information.

DataExport Version 6 Chapter 3: Using DataExport/DLL •• 29

After initiating the translation, no further interaction is required. The DLL will simply
run the translation and return the appropriate error code indicating completion or an
error if a problem was encountered.

Code Example: Running a File-Based Translation

The following example routines demonstrate the initiation of a DataExport/DLL
translation using the DXLaunchEngine method.

Visual Basic Example: Running a file-based translation with the DXLaunchEngine
method

' You must have added the file DXTRANS.VB to your
' project to have the declarations and constants
' available.

Sub DoFileTrans ()

 ' This routine performs a file based translation

 Dim InFileName$, OutFileName$, EdfFileName$, ó
 FileType$, CmdLine$, result&

 ' FileNames and FileType could easily be passed
 ' from the main program,

 InFileName$ = "c:\downloads\textfile.prn"

 EdfFileName$ = "c:\downloads\textfile.edf"

 OutFileName$ = "c:\downloads\dxtest.dbf"

 FileType$ = "DBF"

 CmdLine$ = EdfFileName$ & "," & InFileName$ & ó
 "," & OutFileName$ & "," & FileType$

 result = DX.DXLaunchEngine(CmdLine$)

End Sub

See Appendix A for the DLL command syntax and prototypes for C and Visual Basic.

30 •• Chapter 3: Using DataExport/DLL DataExport Version 6

DataExport Version 6 Chapter 4: File Format Requirements and Limitations •• 31

Chapter 4: File Format
Requirements and Limitations

The file formats supported by the DataExport/DLL have some requirements and
limitations of which you should be aware. This chapter details what you should know
about the supported file formats.

The basic message of this chapter, is this: spreadsheets and database formats have
finite limits on the amount of data they can hold, therefore you must set some limits
on how much data you output with DataExport/DLL.

There are five major categories of output formats supported by the DLL:

Spreadsheets (Excel, Lotus 1-2-3)

Databases (Access, dBase, Clarion)

Interchange (CSV, DIF, SDF)

Text (TXT, ASC)

Word Processing (MS-Word, Word Perfect Mail Merge)

These format categories all have general requirements and limitations which are
discussed in the sections of this chapter. A summary table is provided at the end of
this chapter.

Setting Output Limits for Your Application
The limitations of the output formats supported by DataExport/DLL varies widely.
Some formats—specifically older spreadsheets formats—will only hold a very limited
set of data, while others—like CSV—will allow you to output data until your hard
drive fills up.

For this reason, you should set some limits on the amount of data you allow your
application (or user) to output, depending upon the file format to which you are
writing.

Columns/Fields

The maximum number of columns/fields that DataExport/DLL will allow you to output
is 255. This limitation is based on the fact that almost all the spreadsheet and

32 •• Chapter 4: File Format Requirements and Limitations DataExport Version 6

database formats supported by the DLL have an actual limit of 255 columns/fields—
except for the dBase II format, which is limited to 32 fields.

We suggest that you set a general output limit of 255 columns in your application to
address this limitation. In addition, you should set up an error trapping function to
catch error code 1005 when more than 32 columns are defined for a dBase II output
file.

Rows/Records

DataExport/DLL sets no limits on the number of rows/records it can output. However,
the DLL will return and error code if the maximum number of rows/records for the
specified output format is exceeded.

We suggest that you use this error code as a conditional end to your output routine.
You should also provide an error message in your application when this occurs,
telling users that the maximum number of rows/records supported by the format has
been reached.

Note: DataExport/DLL returns the TooManyRecords (1004) error when you attempt to
write a row/record which exceeds the maximum number the format can hold. The
offending row/record is not written to the file. At that point, you have the option to
stop translation and close the file, as well as provide an error message to your user.

Spreadsheets
Spreadsheet programs generally have fewer input requirements and are more
forgiving in terms of the data that is written to them. For example, putting a text string
in a column of numbers is acceptable. However, spreadsheets typically have a
somewhat restrictive limit to the number of rows/records per sheet they will support.

All spreadsheet formats supported by DataExport/DLL have a limit of 255 columns
and most of them can hold a maximum of 8,192 rows of data. Some newer formats, like
Excel, can hold up to 16,384 rows, while older formats, like Lotus WKS, can only
support 2048 rows. With spreadsheet formats in general, you should be more
concerned with the total number of rows you are outputting, and less concerned with
the type and structure of data.

Excel

The Excel format supports a larger number of rows than most spreadsheet formats
(65,536), however the Excel format did not incorporate multiple-sheets, or
“workbooks”, into its structure, until version 5.0. The multiple-sheet change in v5.0
also added a new requirement for Sheet Names, which is unique for spreadsheet
formats.

Version Row
Limit

Multi-
Sheet

Sheet
Names

FileType File
Extensio
n

v2.1 16,384 No -- XLS XLS

v3.0 16,384 No -- XLS3 XLS

DataExport Version 6 Chapter 4: File Format Requirements and Limitations •• 33

v4.0 16,384 No -- XLS4 XLS

v5.0/7.0 16,384 Yes Yes XLS5 XLS

V97/2000/
XP

65,536 Yes Yes XLS8 XLS

Lotus 1-2-3

The 1-2-3 format supports 8,192 rows per sheet, except for version 1a, which only
supports 2048 rows. Lotus 1-2-3 was one of the first formats to support multiple-sheet
files, but does not incorporate sheet names.

Version Row
Limit

Multi-
Sheet

Sheet
Names

FileType File
Extensio
n

v1A 2,048 No -- WKS WKS

v2.0 8,192 No -- WK1 WK1

v3.0 8,192 Yes No WK3 WK3

v4.0, 5.0 8,192 Yes No WK4 WK4

Quattro, Quattro Pro

The Quattro format supports 8,192 rows per sheet. Multiple sheets per file are not
supported until Quattro Pro version 5.0 for Windows.

Version Row
Limit

Multi-
Shee
t

Sheet
Names

FileTyp
e

File
Extensio
n

Quattro 8,192 No -- WKQ WKQ

Quattro Pro 8,192 No -- WQ1 WQ1

Quattro Pro
5.0 Windows

8,192 Yes No WB1 WB1

Symphony

The Symphony format supports 8,192 rows per sheet and does not support multiple
sheets in any of its formats.

Version Row
Limit

Multi-
Sheet

Sheet
Names

FileType File
Extensio
n

v1.0 8,192 No -- WRK WRK

v1.1, 1.2,
1.3, 2.x

8,192 No -- WR1 WR1

34 •• Chapter 4: File Format Requirements and Limitations DataExport Version 6

Databases
Databases tend to be more restrictive in terms of the type of data that can be written
to them. For example, writing a text string to a numeric column/field in a database is
not acceptable and will generate errors. On the other hand, databases usually have a
larger capacity than a spreadsheet.

The typical database format can hold around 4.3 billion records (232) with a maximum
of 255 fields. One older format, dBase II, holds only 65,536 records, but it is the
exception to the rule. In general, you should be more concerned with the type and
structure of data you are outputting into a database, but less concerned with the total
number of records.

Access

The Access database format is unique in its use of Tables which are essentially
normal dBase-like databases within a larger structure. Tables require a name separate
from the name of the output file. The Access format is also unusual in the way it
measures its maximum capacity.

Access has a limit of
32,768 Tables
assuming there are no
Queries, Forms,
Reports, Macros or
Modules defined.

MDB 2.0 and earlier formats have a maximum file size of 1 Gigabyte. There
are no limits on the number of records in a single table, however, a single
record can contain a maximum of 2000 characters, not including Memo
fields and OLE objects. There is also a limit of 255 fields within a Table
and a limit of 32,768 Objects (Tables, Queries, Forms, Reports, Macros
and Modules) within a single Access file.

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

v1.1 1 GB* 2000 255 MDB1 MDB

v2.0 1 GB* 2000 255 MDB MDB

v3.0 1 GB 2000 255 MDB3 MDB

V4.0/2000 1 GB 2000 255 MDB4 MDB

*1 Gigabyte is the maximum size of a single Access table.

dBase (Approach, FoxPro, Clipper, Alpha, xBase)

If there is a standard database format for PCs, it is the dBase format. Many database
management programs, including Approach, FoxPro, Clipper, Alpha and other xBase
applications use dBase as their format.

dBase files have a standard limit of 4.3 billion records (232 or 4,294,967,296), a maximum
of 4000 characters per record and a limit of 255 fields/columns, except for the dBase II
format (see below). A dBase file is equivalent to a Table in an Access file. Multiple
dBase files can be associated with one another using a relational database manager.

DataExport Version 6 Chapter 4: File Format Requirements and Limitations •• 35

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

v2 65,536 1000 32 DBF2 DBF

v3 4.3 billion 4000 255 DBF3 DBF

v4 4.3 billion 4000 255 DBF4 DBF

Clarion

The Clarion format has a standard capacity for records and fields. The format has a
maximum capacity of 4.3 billion records, a limit of 4000 characters per record and a
maximum of 255 fields.

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

Clarion 4.3 billion 4000 255 DAT DAT

Interchange Formats
Interchange formats typically do not have any restrictions either on the structure or
amount of data you put into them. However, interchange formats do tend to be a bit
large, since they are typically in an ASCII format, rather than a compressed, binary
format.

DIF Rowwise, Columnwise

DIF stands for Data Interchange Format and is commonly used on mainframe and
minicomputers. A “Rowwise” DIF is organized by row, while a “Columnwise” DIF is
organized by column. The Columnwise format is the most commonly used DIF.

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

Columnwise None None None† CDIF DIF

Rowwise None None None† RDIF DIF

† DataExport/DLL’s output is limited to 255 columns /fields.

SYLK Multiplan

The SYLK, or SYmbolic LinK, format originated in Microsoft’s DOS-based Multiplan
software (circa 1985). This format is not commonly used but may be supported by
some older DOS programs.

36 •• Chapter 4: File Format Requirements and Limitations DataExport Version 6

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

SYLK None None None† SLK SLK

† DataExport/DLL’s output is limited to 255 columns /fields.

XML 1.0

XML stands for Meta Language and is commonly used to transfer data on the
internet.

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

v1.0 None None None† XML XML

† DataExport/DLL’s output is limited to 255 columns /fields.

Text Formats
Text formats, similar to interchange formats, typically do not have any restrictions
either on the structure or amount of data you put into them.

Since text formats are ASCII based, they tend to be a bit large because they use more
bits to store data than a binary format.

Comma Separated Values (CSV), ASCII Delimited

These two formats are identical, however, CSV is the more recognized of these
formats. Both are provided for in DataExport/DLL. This format separates cells/fields
using commas “,”, has one record per line (ended by a carriage return/line feed) and
surrounds text cells/fields with straight quotation marks <">. DataExport/DLL’s
implementation of the CSV format writes dates as a Lotus serial date (number of days
since January 1, 1900) and time as a Lotus decimal day (midnight to midnight
expressed as decimal between zero and one).

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

CSV None None None† CSV CSV

ASCII del. None None None† ASC ASC

† DataExport/DLL’s output is limited to 255 columns /fields.

DataExport Version 6 Chapter 4: File Format Requirements and Limitations •• 37

Tab Separated Values (TSV)

The TSV format is very similar to the CSV format, except that the cells/fields are
separated by Tab characters instead of commas. The TSV format does not have
quotation marks around text cells/fields. Dates are output as a Lotus serial date and
times as a Lotus decimal day.

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

TSV None None None† TSV TSV

† DataExport/DLL’s output is limited to 255 columns /fields.

Custom Delimited (UDD)

The Custom delimited format or User-Defined Delimited format allows you to specify
the field and string delimiters in an ASCII delimited file. Dates are output as a Lotus
serial date and times as a decimal day.

This output format is only available using a field-based translation method. Delimiters
are specified using the UDD statement in an EDF.

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

Custom
del.

None None None† UDD UDD

† DataExport/DLL’s output is limited to 255 columns /fields.

Fixed Field ASCII

The fixed length file format is a mainframe format in which each column/field is a
specific number of characters wide and each record is a fixed number of characters
long. This format contains no carriage return/line feeds.

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

Fixed Len. None None None† FXD FXD

† DataExport/DLL’s output is limited to 255 columns /fields.

Standard Data Format (SDF)

The Standard Data Format, or SDF, is very similar to the fixed length format in that
each column/field is a fixed number of characters wide. However, a SDF file ends each
record with carriage return/line feed.

38 •• Chapter 4: File Format Requirements and Limitations DataExport Version 6

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

SDF None None None† SDF SDF

† DataExport/DLL’s output is limited to 255 columns /fields.

Print Image (PRN), Word Processing Text

The Print Image and Word Processing text formats are simply the output of data with
all included spaces. These formats will typically look like a SDF file, however these
file formats accept title and header information.

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

Print Im. None None None† PRN PRN

Word P.T. None None None† TXT TXT

† DataExport/DLL’s output is limited to 255 columns /fields.

HTML Table

The HTML Table formats is a simple tabular representation of data that can be
viewed in a web browser.

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

 V3.0 None None None† HTM HTM

† DataExport/DLL’s output is limited to 255 columns /fields.

Named Values

The Named Value output type formats is simply the fieldname/column name followed
by the value.

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

 Named Val None None None† NVL NVL

† DataExport/DLL’s output is limited to 255 columns /fields.

DataExport Version 6 Chapter 4: File Format Requirements and Limitations •• 39

Word Processing Formats
Word processing formats supported by DataExport/DLL are data files used for mail
merge routines and should not be confused with formatted documents like DOC or
WRI files. These files contain only data such as names and addresses.

As with CSV and other interchange formats, Word Processing merge files have very
few limits either on the structure or the amount of data they can contain. However,
unlike CSV files, Word Processing formats do require column/field names for output.

Microsoft Word Mail Merge

The Microsoft Word Mail Merge format used for creating merged documents, such
as multiple copies of a letter with different mailing addresses. This format is very
similar to a CSV file, however, the first row/record of this file provides the names of
the fields in the file, so column/field names are required for this output format.

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

MS
Merge

None None None† WRD WRD

† DataExport/DLL’s output is limited to 255 columns /fields.

WordPerfect Mail Merge

The Word Perfect Mail Merge format used for creating merged documents, such as
multiple copies of a letter with different mailing addresses. This format also uses
names for columns/fields and should be provided for in your output definitions.

40 •• Chapter 4: File Format Requirements and Limitations DataExport Version 6

Version Record
Limit

Record
Width
Limit

Field
Limit

FileTyp
e

File
Exten-
sion

v5.0. None None None† W50 W50

v5.1 None None None† W51 W51

† DataExport/DLL’s output is limited to 255 columns /fields.

Summary Table
Version Row/

Recor
d Limit

Recor
d
Width
Limit

Column/
Field
Limit

FileTyp
e

File
Exten
-sion

Access 1.1 1 GB* 2000 255 MDB1 MDB

Access 2.0 1 GB* 2000 255 MDB MDB

ASCII del. None None None† ASC ASC

Clarion 4.3 billion 4000 255 DAT DAT

CSV None None None† CSV CSV

dBase v2 65,536 1000 32 DBF2 DBF

dBase v3 4.3 billion 4000 255 DBF3 DBF

dBase v4 4.3 billion 4000 255 DBF4 DBF

DIF Column None None None† CDIF DIF

DIF Rowwise None None None† RDIF DIF

Excel v2.1 16,384 None 255 XLS XLS

Excel v3.0 16,384 None 255 XLS3 XLS

Excel v4.0 16,384 None 255 XLS4 XLS

Excel v5.0 16,384 None 255 XLS5 XLS

Excel
97/2000/XP

65,536 None 255 XLS8 XLS

Fixed Length None None None† FXD FXD

Lotus 1-2-3,
4.0, 5.0

8,192 None 255 WK4 WK4

Lotus 1-2-3
1A

2,048 None 255 WKS WKS

Lotus 1-2-3 2.0 8,192 None 255 WK1 WK1

Lotus 1-2-3 3.0 8,192 None 255 WK3 WK3

MS Word None None None† WRD WRD

DataExport Version 6 Chapter 4: File Format Requirements and Limitations •• 41

Version Row/
Recor
d Limit

Recor
d
Width
Limit

Column/
Field
Limit

FileTyp
e

File
Exten
-sion

Print Image None None None† PRN PRN

Quattro 8,192 None 255 WKQ WKQ

Quattro Pro 8,192 None 255 WQ1 WQ1

Quattro Pro
5.0 Windows

8,192 None 255 WB1 WB1

Standard Data
Format (SDF)

None None None† SDF SDF

SYLK None None None† SLK SLK

Symphony
v1.0

8,192 None 255 WRK WRK

Symphony
v1.1, 1.2, 1.3,
2.x

8,192 None 255 WR1 WR1

TSV None None None† TSV TSV

Word Proc. None None None† TXT TXT

WordPerf. 5.0 None None None† W50 W50

WordPerf. 5.1 None None None† W51 W51

*1 Gigabyte is the maximum size of a single Access table.
† DataExport/DLL’s output is limited to 255 columns /fields.

42 •• Chapter 4: File Format Requirements and Limitations DataExport Version 6

DataExport Version 6 Appendix A: DataExport/DLL Methods •• 43

Appendix A: DataExport/DLL
Methods

This chapter is a reference guide to the DataExport/DLL Interface. The guide provides
a listing of each method general use and syntax.

The syntax and parameter definitions are provided using standard C programming
conventions for variables:

INT 2 byte signed short integer

DOUBLE 8 byte floating point IEEE real

FLOAT 4 byte floating point IEEE real

LONG 4 byte signed long integer

LPLONG long pointer to a long integer

LPSTR long pointer to a string buffer. All strings use the ASCIIZ
(ASCII zero delimited) C standard type.

Visual Basic programmers should not be as concerned whether the parameter is
passed as a normal variable or as a long pointer, this is handled by using the function
declarations provided in DXTRANS.VB. Just add this file to your Visual Basic
project.

Methods for Querying Supported Formats
DataExport/DLL provides an interface for determining the file formats currently
supported by the DLL. This interface can be used by you to auto-generate dialog
boxes and routines at run time which automatically reflect new output formats
supported by DataExport/DLL.

DXGetNumTypes

Syntax: LONG DXGetNumTypes()

Description: Returns the number of output types supported by the current version of
DXTRANS.DLL installed on the local machine.

44 •• Appendix A: DataExport/DLL Methods DataExport Version 6

Return Value: Returns the number of supported output types (LONG) or a 0 if
unsuccessful.

DXEnumTypes

Syntax: LONG DXEnumTypes(Index, TypeDesc, TypeExt, TypeID,
&TypeofTrans, &NameNeeded)

Parameter Type Description

Index LONG Output type # (1 based) obtained from
DXGetNumTypes()

TypeDesc LPSTR Pointer to buffer to receive Menu name
of output type. This buffer must be
allocated to hold up to 40 characters.

TypeExt LPSTR Pointer to buffer to receive file extension
of output type. This buffer must be
allocated to hold up to 4 characters.

TypeID LPSTR Pointer to buffer to receive FileType
used in DXInitTrans of output type
(see “FileType” section). This buffer
must be allocated to hold up to 5
characters.

TypeofTran
s

LPLONG Pointer to integer to receive Category of
output type:

 0 = text
 1 = mail merge
 2 = interchange
 3 = spreadsheet
 4 = database

NameNeeded LPLONG Pointer to integer to receive
NameNeeded flag; returns -1 if output
type requires a TableName in
DXInitTrans

Description: Provides information about an individual format—specified by an
output type Index number (1 through X, where X equals the value returned by
DXGetNumTypes).

Return Value: Success/Error code. See "Return Codes" section for definition.

Cell-by-Cell Output Methods
These methods are the primary interface with DataExport/DLL. It provides controls
for sending data from your program into an output file.

DXInitTrans

Syntax: LONG DXInitTrans(FileName, FileType, TableName, NumCol,
IfExistFlag, &handle)

DataExport Version 6 Appendix A: DataExport/DLL Methods •• 45

Parameter Type Description

FileName LPSTR Pointer to buffer that contains Name of
file to be output

FileType LPSTR Pointer to buffer that contains FileType
(see “FileType” section)

TableName LPSTR Pointer to buffer that contains Name of
Table (64 characters maximum)

NumCol LONG Number Columns/Fields to be output
(255 maximum)

IfExistFlag LONG Flag that specifies whether to overwrite
or append if the specified FileName
exists:

 0 = Overwrite
 1 = Append

handle LPLONG Pointer to integer to receive handle
number, or 0 if error

Description: The DXInitTrans function initializes an output file, specifying the
name and type of file, the number of columns/field in the file and determines how
DataExport/DLL will treat an existing file with a file name matching the specified
FileName.

Return Value: Success/Error code. See "Return Codes" section for definition.

Related Functions: DXDefData, DXCloseFile

DXDefData

Syntax: LONG DXDefData(handle, Index, DataType, DataWidth,
DataDecimal, DataName)

Parameter Type Description

handle LONG Handle number returned from
DXInitTrans

Index LONG Column/field number (1 based), 1
through number of columns specified
by NumCol in the preceding
DXInitTrans call

DataType LONG DataType (1-10) see “DataTypes”
section

DataWidth LONG Width of column/field in characters

DataDecimal LONG Number of decimals in column/field
data

DataName LPSTR Pointer to buffer that contains the name
of the column/field

Description: The DXDefData function specifies the width and type of data in each
column/field. This function must be called once for each of the columns/fields
specified by NumCol in the preceding DXInitTrans.

46 •• Appendix A: DataExport/DLL Methods DataExport Version 6

Data in the buffer is
kept until overwritten
or cleared out with
DXClearBuffer

Once all column/fields have been defined, DataExport/DLL initializes a
buffer into which the calling application can write the data for each
row/record using the DXPut functions. Each row/record is committed to
the output file with the DXWriteBuffer function.

Return Value: Success/Error code. See "Return Codes" section for definition.

Related Functions: DXInitTrans

DXPutInt

Syntax: LONG DXPutInt(handle, Index, Value)

Parameter Type Description

Handle LONG Handle number returned from
DXInitTrans

Index LONG Column/field number (1 based)

Value int 2 byte signed Integer

Description: The DXPutInt function writes a two byte, signed integer value to the
specified column/field index in the initialized buffer.

Return Value: Success/Error code. See "Return Codes" section for definition.

Related Functions: DXPutLong, DXPutSingle, DXPutDouble, DXPutString

DXPutLong

Syntax: LONG DXPutLong(handle, Index, Value)

Parameter Type Description

handle LONG Handle number returned from
DXInitTrans

Index LONG Column/field number (1 based)

Value LONG 4 byte signed Long Integer

Description: The DXPutLong function writes a four byte, long integer value to the
specified column/field index in the initialized buffer.

Return Value: Success/Error code. See "Return Codes" section for definition.

Related Functions: DXPutInt, DXPutSingle, DXPutDouble, DXPutString

DXPutSingle

Syntax: LONG DXPutSingle(handle, Index, Value)

Parameter Type Description

Handle LONG Handle number returned from
DXInitTrans

Index LONG Column/field number (1 based)

Value float 4 byte Single Precision IEEE Real

DataExport Version 6 Appendix A: DataExport/DLL Methods •• 47

Description: The DXPutSingle function writes a four byte, single precision IEEE
Real value to the specified column/field Index in the initialized buffer.

Return Value: Success/Error code. See "Return Codes" section for definition.

Related Functions: DXPutInt, DXPutLong, DXPutDouble, DXPutString

DXPutDouble

Syntax: LONG DXPutDouble(handle, Index, Value)

Parameter Type Description

handle LONG Handle number returned from
DXInitTrans

Index LONG Column/field number (1 based)

Value double 8 byte Double Precision IEEE Real

Description: The DXPutDouble function writes an eight byte, double precision IEEE
real value to the specified column/field Index in the initialized buffer.

Return Value: Success/Error code. See "Return Codes" section for definition.

Related Functions: DXPutInt, DXPutLong, DXPutSingle, DXPutString

DXPutString

Syntax: LONG DXPutString(handle, Index, Value, DataType)

Parameter Type Description

handle LONG Handle number returned from
DXInitTrans

Index LONG Column/field number (1 based)

Value LPSTR Pointer to zero delimited String

DataType LONG StringType (0-14)—see “StringTypes”
section in this chapter

Description: The DXPutString function is used to write text string values into the
specified column/field Index in the initialized buffer. The function can also be used to
parse certain string values into a more appropriate format. For example, putting the
string “12/31/95” and defining it as a date (“DXString_Date_MDY” StringType) will
cause DataExport/DLL to write the data into the output file in the appropriate date
format.

Return Value: Success/Error code. See "Return Codes" section for definition.

Related Functions: DXPutInt, DXPutLong, DXPutSingle, DXPutDouble

48 •• Appendix A: DataExport/DLL Methods DataExport Version 6

DXWriteBuffer

Syntax: LONG DXWriteBuffer(handle)

Parameter Type Description

handle LONG handle number returned from
DXInitTrans

Description: The DXWriteBuffer function commits the data currently in the buffer
to a row/record in the output file. Note: Data in the buffer is not automatically cleared
out by this command; data remains until overwritten or cleared out with the
DXClearBuffer function.

Return Value: Success/Error code. See "Return Codes" section for definition.

Related Functions: DXClearBuffer

DXClearBuffer

Syntax: LONG DXClearBuffer(handle)

Parameter Type Description

handle LONG handle number returned from
DXInitTrans

Description: The DXClearBuffer function erases any data in the currently
initialized DataExport/DLL buffer.

Return Value: Success/Error code. See "Return Codes" section for definition.

Related Functions: DXWriteBuffer

DXCloseFile

Syntax: void DXCloseFile(handle)

Parameter Type Description

handle LONG handle number returned from
DXInitTrans

Description: The DXCloseFile function closes the current output file. The expected
last function call is a DXWriteBuffer.

Return Value: Does not return value.

Related Functions: DXInitTrans

DataExport Version 6 Appendix A: DataExport/DLL Methods •• 49

File-Based Translation Method
This method is used to initiate a translation in the file based translation method. This
single function operates similarly to an executable call with command-line parameters.

DXLaunchEngine

Syntax: LONG DXLaunchEngine(CmdLine)

Parameter Type Description

CmdLine LPSTR Pointer to buffer that contains the
command line text, see “Command Line
Parameters” below

Description: The DXLaunchEngine function initiates a file-based translation using
the DataExport/DLL. An Export Definition File (EDF) or a DataImport Mask (MSK) file
must be present to define the data structure of the output file and translation method.
A Raw Data File—or ASCII text report file—must also be present as a data source.

Return Value: Success/Error code. See "Return Codes" section for definition.

Related Functions: None

Command Line Parameters

Parameters for the DXLaunchEngine function are similar to command line switches
used when running an executable (EXE) file.

Note: For developers familiar to the DataImport command line, the switches and
parameters for DXLaunchEngine are nearly identical to that of DIW.EXE command
line. If your are familiar with the DataImport command line parameters, you should
move on to the next section “Differences from the DataImport Command Line”
Otherwise, please continue with this section.

Once an EDF or MSK file has been defined and saved to disk, the translation can be
initialized using these command line controls:

Syntax:

CmdLine = "filter[,[input],[output],[type],
[display],[confirm]] [/A] [/C] [/R] [/K] [/S[=f[,s]]]"

The command line parameters for the DXLaunchEngine function are positional and
separated by commas. If a parameter is skipped, a comma must be used to hold its
place. The switches, /A, /C, /R, /K and /S are not positional and are not separated by
commas.

The only required parameter is the filter (an EDF or Mask File name). If no other
parameters are provided, the instructions specified in the EDF or MSK will be used in
the translation.

filter EDF or Mask File name, including the path if necessary. This is the
only required parameter. If no other parameters are provided, the
instructions specified in the EDF or MSK will be used in the translation.

50 •• Appendix A: DataExport/DLL Methods DataExport Version 6

Note: The following command-line switches take precedence over any definitions in
the provided EDF or MSK file. For example, if an EDF specifies a file name of
“outfile1.xls” and the command line specifies a file name of “file5.xls”, the filename
“file5.xls” will be used.

input Input File name, including the path and extension.

output Output File name, including the path if necessary. If an extension is
specified, it will be used rather than the file extension DataImport
normally uses based on the type of translation.

type Type of translation to be performed. See FileTypes section of this
chapter for type strings.

display Specifies whether the output is to be displayed on screen
during translation: Y for yes, N for no. The default is Yes.

confirm Specifies whether Include Line and Exclude Line
treatments must be confirmed manually during the translation. Y for yes,
N for no. The default is No.

/A Appends the output of the translation to the end of an existing Output
File.

/C Combines the output of the translation into an existing spreadsheet
Output File.

/R Removes the Mask or EDF file after reading information from the file.
Without this switch, the filter file remains on disk.

/K Kills the input file after the translation is complete. Without this switch,
the input file is left on disk.

/S[=f[,s]] Specifies the delimiters for a custom delimited input file;
where f is the ASCII number of the field separator (44 for comma), and s
is the ASCII number of the string delimiter (34 for straight quote).
Comma and quotation mark is the default if not specified.

To specify some parameters and not others, include the intervening commas as place
holders. This is necessary to indicate which of the options you want to use. For
example, if you want to use the name of the Input File stored with the Mask, but want
to change the name of the Output File, you would place two commas before the name
of the new Output File. Otherwise, DataExport/DLL would interpret the output file
name as an Input File. Commas, however, are unnecessary as place holders before the
“/” switches, such as the /A and /C parameters.

If a parameter is not specified on the command line and the parameter has not been
specified in the EDF or MSK, the translation cannot proceed. In such cases, the
translation is aborted and a message is displayed on the screen to indicate the
missing or invalid parameter(s).

The following four examples illustrate the ways translations can be initiated using a
command line.

Translate Command Line Example 1

To perform a file-based translation using the following parameters:

EDF name FILTER.EDF

Input File name DIDEMO.TXT

DataExport Version 6 Appendix A: DataExport/DLL Methods •• 51

Output File name SALESDAT

Translation type XLS

Display on Y (Yes)

Confirm include/exclude Y (Yes)

Append to existing file /A

The CmdLine parameter should be:

"FILTER.EDF,DIDEMO.TXT,SALESDAT,XLS,Y,Y /A"

Translate Command Line Example 2

To perform a file-based translation using the following parameters:

Mask File name MYMASK.MSK

Input File name as specified in the mask

Output File name as specified in the mask

Translation type XLS

Display on default to yes

Confirm include/exclude default to no

The CmdLine parameter should be:

"MYMASK.MSK,,,XLS"

Translate Command Line Example 3

To perform a file-based translation using the following parameters:

EDF name COMPLET.EDF

Input File name as specified in the EDF

Output File name as specified in the EDF

Translation type as specified in the EDF

Display on default to yes

Confirm include/exclude default to no

The CmdLine parameter should be:

"COMPLET.EDF"

Translate Command Line Example 4

To perform a file-based translation using the following parameters:

Mask File name MYMASK.MSK

Input File name ORIGINAL.DAT

Output File name GOOD

Translation type as specified in the mask

Display on default to yes

Confirm include/exclude default to no

52 •• Appendix A: DataExport/DLL Methods DataExport Version 6

File-combine /C

The CmdLine parameter should be:

"MYMASK.MSK,ORIGINAL.DAT,GOOD /C"

Differences from the DataImport Command Line

There are three additional switches for the command line parameters of the
DXLaunchEngine function. Two of these switches concern the treatment of EDF,
MSK and data files after completing translation. The third allows you to specify
delimiters for a custom-delimited ASCII input file.

/R Removes the Mask or EDF file after reading information from the file.
Without this switch, the filter file remains on disk.

/K Kills the input file after the translation is complete. Without this switch,
the input file is left on disk.

/S[=f[,s]] Specifies the delimiters for a custom delimited input file;
where f is the ASCII number of the field separator (44 for comma), and s
is the ASCII number of the string delimiter (34 for quote). Comma and
quote is the default.

FileTypes
These codes are used in the FileType parameter of the DXInitTrans command to
define the type of output format to be written. FileType codes for each format can
be obtained at run time using the method DXEnumTypes. For more information about
these file formats, refer to Chapter 4: File Format Requirements and Limitations.

ASCII text file TXT

Borland Quattro WKQ

Borland Quattro Pro WQ1

Borland Quattro Pro 5.0 for Windows WB1

Clarion DAT

Columnwise DIF CDIF

Columnwise DIF DIF

Comma Separated Variable CSV

Comma separated ASCII ASC

dBase II DBF2

dBase III DBF3

dBase IV DBF4

Fixed record format without delimiters FXD

HTML Table HTM

Lotus 1-2-3 release 1 and 1A WKS

Lotus 1-2-3 release 2.x WK1

DataExport Version 6 Appendix A: DataExport/DLL Methods •• 53

Lotus 1-2-3 release 3.x WK3

Lotus 1-2-3 release 4.x and 5.x WK4

Microsoft Access 1.1 MDB1

Microsoft Access 2.0 MDB

Microsoft Access 3.0 MDB3

Microsoft Access 4.0/2000/XP MDB4

Microsoft Excel version 2.1 XLS

Microsoft Excel version 3.0 XLS3

Microsoft Excel version 4.0 XLS4

Microsoft Excel version 5.0 XLS5

Microsoft Excel version 8.0/97/2000/XP XLS8

Microsoft Word data document WRD

Named Values NVL

Print Image PRN

Rowwise DIF * RDIF

Standard Data Format SDF

SYLK or Symbolic Link SLK

Symphony release 1.0 WRK

Symphony release 1.1, 1.2 and 2.x WR1

Tab separated variables TSV

User-defined delimited UDD

Word Perfect 5.0 secondary merge file W50

Word Perfect 5.1 secondary merge file W51

XML 1.0 XML

* Only available in a File-Based Translation

54 •• Appendix A: DataExport/DLL Methods DataExport Version 6

DataTypes
These codes are used in the DataType parameter of the DXDefData method to define
the type of data in a Column or Field.

Variable Name Valu
e

Data Type Description

DXData_GENERAL 0 Allows DataExport/DLL to define data
type based on data item passed *

DXData_BOOLEAN 1 Numeric value of 1 (Yes) or 0 (No)

DXData_BYTE 2 1 byte integer

DXData_INTEGER 3 2 byte signed integer

DXData_LONG 4 4 byte signed integer

DXData_CURRENC
Y

5 Numeric currency value

DXData_SINGLE 6 4 byte single precision IEEE Real

DXData_DOUBLE 7 8 byte double precision IEEE Real

DXData_DATE 8 Date formatted value

DXData_TEXT 9 Text string to be written as-is or
formatted, based on passed StringType
parameter

DXData_TIME 10 Time formatted value

* DataExport/DLL will attempt to identify the first data item as a numeric value and,
failing that, will assume it is a text item. This decision determines the data type setting
of column/field. The DXData_GENERAL setting is typically only used with
spreadsheets or for writing text items to an output file.

These values are declared as constants in the DXTRANS.H and DXTRANS.VB
declaration files included with DataExport/DLL.

Note: Not all output formats support each of these DataTypes directly. When an data
type is not directly supported by the output format, DataExport/DLL selects the
closest data type the output format will support. In general, you should be as specific
as possible about the type of data you want to output when defining columns/fields
and DXPut-ing data to the buffer. The DLL will then determine the most appropriate
final data format for the output file.

For more information on the relationship between DataTypes, DXPut functions and
StringTypes, refer to the table in “Writing Cells in a Row/Record” in Chapter 3.

StringTypes
These codes are used in the DataType parameter of the DXPutString method to
define the how the passed text string should be formatted.

DataExport Version 6 Appendix A: DataExport/DLL Methods •• 55

Variable Name Valu
e

Formatting Description

DXString_Default 0 DataExport/DLL will first try to output
the string as a number and then
fallback to outputting the string as text

DXString_Text 1 DataExport/DLL writes the string as
text, into the output file as-is

DXString_SOP 2 Translates string in a signed
overpunch format into a numeric value

DXString_Date_MDY 3 Formats a delimited string* as a date
of the format Month, Day, Year

DXString_Date_DMY 4 Formats a delimited string* as a date
of the format Day, Month, Year

DXString_Date_YMD 5 Formats a delimited string* as a date
of the format Year, Month, Day

DXString_Date_MY 6 Formats a delimited string* as a date
of the format Month, Year

DXString_Date_YM 7 Formats a delimited string* as a date
of the format Year, Month

DXString_Date_YD 8 Formats a delimited string* as a date
of the format Year, Day,

DXString_Date_DY 9 Formats a delimited string* as a date
of the format Day, Year

DXString_Date_Cust
om

10 Formats a non-delimited string as a
date **

DXString_Time 11 Formats a string as a time†

DXString_Lowercase 12 Formats text string to all lowercase
characters

DXString_Uppercase 13 Formats text string to all UPPERCASE
characters

DXString_Caps 14 Formats text string so that the initial
letter of each word is capitalized

* Delimited date strings are numeric and can be delimited with any non-numeric
character, such as “/”, “-”, “\”, etc.

** This feature is only available in a File-Based translation. The custom, non-
delimited format must be specified in the EDF (using CUSTOMDATE) or pre-defined
in the MSK file.
† Strings to be formatted as a time must be in one of two forms: XX:XX[AM/PM] or
as XX:XX in 24-hour format.

These values are declared as constants in the DXTRANS.H and DXTRANS.VB
declaration files included with DataExport/DLL.

For more information on the relationship between DataTypes, DXPut functions and
StringTypes, refer to the table in “Writing Cells in a Row/Record” in Chapter 3.

56 •• Appendix A: DataExport/DLL Methods DataExport Version 6

CellTypes
 DXSetFormat method to define the how the columns of cells should be formatted in
a spreadsheet.

Variable Name Valu
e

Formatting Description

DXNone 0 DataExport/DLL will not format the cell
with any specific commas or currency
symbols in a spreadsheet.

DXCellCurrency 16 DataExport/DLL will format the cell
with currency symbols.

DXCellComma 32 DataExport/DLL will format the cell
with commas.

UDD Strings
These codes are used in the DXDefStringA and DXDefStringA methods to define
which strings should be used for the field separator and the string delimiter in a UDD
translation.

Variable Name Valu
e

Formatting Description

DXStrInd_FieldSepara
tor

1 This indicates that the string passed
should be used for the Field Separator.

DXStrInd_StringDelim
iter

2 This indicates that the string passed
should be used for the String
Delimiter.

Return Codes
DataExport/DLL methods can return a variety of error codes generated internally, by
the operating system or other DLLs.

These are the error codes returned specifically by DataExport/DLL:

Error Mnemonic Code

DXErr_OK -1

DXErr_NoHandlesAvail 1001

DXErr_HandleNotValid 1002

DXErr_IndexNotValid 1003

DXErr_TooManyRecords 1004

DataExport Version 6 •• 57

DXErr_BadDataType 1005

DXErr_BadStringType 1006

DXErr_TooManyColumns 1007

DXErr_BadFieldName 1008

1001 No handles are available. Typically this error results when you have
previously called DataExport/DLL and it has not completed it’s translation session. In
this version of DataExport/DLL, only one handle is available for translation at one
time.

1002 Handle provided is not valid. The handle you provided with your call is not
the one returned to your program with result of the DXInitTrans function.

1003 Index provided is not valid. The column/field Index provided with the last
call does not fall within the range of columns/fields you set in the your last
DXInitTrans call (e.g., You are trying to write to column 10 when you only have 9
columns defined.)

1004 Too many rows/records have been output. Some formats—specifically
spreadsheet formats—have a limit to the number of rows they can hold per sheet, see
Chapter 4: File Format Requirements and Limitations for more information. Database
formats are typically limited to 4.3 billion records (232), although dBase 2 is limited to
65,536 records. Text, mail merge and interchange formats do not have limitations on
the number of rows/records they can hold.

1005 Bad DataType code received. DataExport/DLL has received a DataType
number it does not recognize in a DXDefData function call.

1006 Bad StringType code received. The DLL has received a StringType
number it does not recognize in a method.

1007 Too many columns/fields have been defined. The vast majority of
spreadsheet and database formats supported by DataExport/DLL have a limit of 255
columns/fields per file (or per Access table), except for dBase II, which has a limit of
32 fields. The DLL can output a maximum of 255 fields, see Chapter 4: File Format
Requirements and Limitations for more information.

These values are declared as constants in the DXTRANS.H and DXTRANS.VB files
included with DataExport/DLL. Additional common error codes not generated by
DataExport/DLL are also provided in these header files. These codes are generated by
the operating system and other DLLs.

1008 The field name passed with DXDefData is not valid for the output type
passed.

58 •• DataExport Version 6

DataExport Version 6 •• 59

DataExport Version 6 Appendix B: EDF Statements and Format •• 61

Appendix B: EDF Statements and
Format

An Export Definition File (EDF) provides the controls to conduct a file-based
translation from an ASCII Raw Data File to a new output file in the format you
specify. This chapter describes the control functions and the format of the EDF file.

EDF Format
This section discusses the EDF format, its requirements and arrangement of
statements. The EDF format is a simple ASCII text file and has only a few
requirements for definition.

An EDF is made up of statements (e.g., STATEMENT=X,Y,“Z”), each statement is
written with its parameters on a line by itself. The statement text to the left of the
equal sign “=” is not case sensitive, hence

STATEMENT=

statement=

Statement=

are all acceptable syntax. Values to the right of the equal sign, however are case
sensitive. Any text strings in the parameters of a statement should be surrounded by
straight quotation marks <">. Blank lines are allowed and comment lines can be
inserted with a semicolon “;” at the beginning of a line.

Only the VERSION, COLUMN (or REFPT and TAG), INFILE and OUTFILE, statements
are required in an EDF. The “Required Statements” and “Statement Order” sections
below explain the use of and special considerations for these statements.

Required Statements

There are only two required statements in an EDF file and two more
statement/definitions which must be provided either in the EDF or the CmdLine
parameter of the DXLaunchEngine API call. The following two statements are
required in any EDF:

VERSION is required to identify the format of the EDF file.

62 •• Appendix B: EDF Statements and Format DataExport Version 6

COLUMN is required to identify the number, size and type of the
columns/fields to be written to the output file. One COLUMN statement
is required for each column/field to be output. (If you are using REFPTs
and TAGs, no column statements are required, but at least one REFPTs
and one TAG must be defined.)

The information provided by the following two statements is required to be provided
either in the EDF or the CmdLine parameter of the DXLaunchEngine API call:

INFILE identifies the data source file (either delimited ASCII or a text report)
which DataExport/DLL is to translate. This statement is equivalent to
the input parameter of the CmdLine in the DXLaunchEngine function.

OUTFILE identifies the output file which DataExport/DLL is to write. This
statement is equivalent to the output parameter of the CmdLine in the
DXLaunchEngine function.

If these parameters are provided in both the EDF and the CmdLine parameter, the
CmdLine definitions will be used.

Statement Order

There are only three statements in the EDF format which are required to be in a
specific order in the file:

VERSION must be the first statement of any EDF file. The placement of this
statement is crucial for proper interpretation of an EDF.

REFPT statements can be located on any line of the EDF file except for the
first line. However, its related TAG statements must follow directly after
it.

TAG statements must follow the REFPT statement on which they are based.

All other statements can be placed anywhere in the EDF, except on the first line of the
file.

Examples

This section provides a few examples of properly constructed EDF files.

Example 1

The following EDF example translates a CSV input file into an Access format file:

VERSION=1.0

INFILE="c:\data\contacts.csv",44,34

COLUMN=20,0,,,"FirstName"

COLUMN=40,0,1,,"LastName"

COLUMN=40,0,1,,"Company"

COLUMN=8,0,5,,"DateLastContacted"

OUTFILE="c:\data\prospect.mdb",MDB

TABLENAME="Contacts"

DataExport Version 6 Appendix B: EDF Statements and Format •• 63

Notice that the startpos is set to zero for each of the COLUMN statements, since
the source file is delimited. The columns are defined in the order in which they appear
in the CSV file; the first COLUMN statement defines the first column/field in the CSV
file, the second statement defines the second column, etc. The optional
TABLENAME statement is used only for Access formats.

Example 2

The following EDF example translates a fixed fielded input file into an Lotus 1-2-3
version 4 spreadsheet:

VERSION=1.0

INFILE="c:\data\contacts.txt"

COLUMN=20,1,,,"FirstName"

COLUMN=40,21,1,,"LastName"

COLUMN=40,81,1,,"Company"

COLUMN=8,61,5,,"DateLastContacted"

OUTFILE="c:\data\cntct.wk4",WK4

Notice that in this fixed fielded input file, the “DateLastContacted” data actually
comes before the “Company” column/field (indicated by the startpos parameter for
each). However, since the COLUMN statement for “Company” appears third in the
EDF, it will be written as the third column in the spreadsheet.

Example 3

The following EDF example translates a ASCII report input file with record-per-page
data into a Paradox database:

ACCOUNT: 400-234-242399 PATIENT: SMITH, RONALD

INSURED: Y COMPANY: MEDTECH INDEMN.

POLICY#: HMDSR88900-9980 TIME ADMITTED: 11:46

SEEN BY: H. NORMAND DIAGNOSIS CODE: HBST1

TREATMENT CODE: HBSTC3 COVERED TREATMENT: Y

ACCOUNT: 845-538-546839 PATIENT: DEAN, CHRISTINA

INSURED: Y COMPANY: ENSURE MEDICAL

POLICY#: CYMD800-5480 TIME ADMITTED: 13:02

SEEN BY: H. NORMAND DIAGNOSIS CODE: RCVN04

TREATMENT CODE: RCTRZ2 COVERED TREATMENT: Y

To extract the Account number, patient name, policy number and diagnosis code, the
EDF definition will use Reference Points and Line Tags to extract the fields.

VERSION=1.0

INFILE="c:\data\p-report.txt"

REFPT="ACCOUNT:",1

TAG=0,10,18,1,"PatientID"

64 •• Appendix B: EDF Statements and Format DataExport Version 6

TAG=0,38,20,1,"PatientName"

TAG=2,10,18,1,"Policy#"

TAG=3,45,6,1,"Condition"

INCLUDE="TREATMENT CODE:",1,1

OUTFILE="c:\data\patients.db",DB35

This EDF is specifically designed for the record-per-page type ASCII report above.
Notice that no columns are defined but a REFPT and TAGs have been defined to
extract data fields from the report. The INCLUDE statement allows the collected TAG
information to be written to the output file at the end of each patient record. Without
the INCLUDE statement, no data would be output.

EDF Statements
Control parameters in an EDF file have one of two functions: 1) specify the name,
structure and format of an output file or 2) specify the name of a data source file and
how to read data from that file. The following section details EDF controls and their
general use.

VERSION (Required)

Syntax: VERSION=version#

Description: This required statement specifies the version of the EDF format you are
using and must be on the first line of the EDF. This parameter is used to determine
how to read the EDF statements.

The version# parameter for the format described in this manual is 1.0. Be sure to
check the README.TXT file for any changes to this format and corresponding new
version numbers.

Example:

VERSION=1.0

Related Functions: None

COLUMN (Required)

Syntax: COLUMN=width[,startpos[,type[,dup[,"name"]]]]

Description: This required statement defines the columns/fields to be output from the
source file. One column statement must be provided for each column to be output.
When using a CSV source file, the order of the column statements corresponds to the
order of the fields in the source file (i.e., the first column statement defines the first
column/field in the CSV, the second statement defines the second column/field, etc.).

When using a fixed fielded input file, the order in which column statements are
provided is the order they are written into the output file. Therefore, the order of the
columns/fields can be changed during translation. For example, if the first column
statement identifies a field starting at character position 50, that column/field is
output first, even though it may be the second or third column in the source file.

DataExport Version 6 Appendix B: EDF Statements and Format •• 65

Note: The maximum total number of COLUMN and TAG statements cannot exceed
255.

The width parameter is required for any column statement. When using a CSV
source file, this parameter specifies the width—in number of characters—of the
column/field in the output file. When using a fixed fielded source file, this parameter
specifies the width of the column/field in both the source file and the output file.

The startpos parameter is a required numeric code when translating a fixed field
source file. This number identifies the position of the first character—in number of
characters—(base 1) of a field in the input file.

The type parameter is an optional numeric code which identifies the type of data
contained in the column/field. The type is a numeric code corresponding to the
“StringTypes” defined in Appendix A. If this parameter is not provided,
DataExport/DLL will read the first cell of the column/field in the source file, attempt to
format the column as numeric values (DXString_Default = 0) and, if that fails, format it
as text strings (DXString_Text = 1).

The dup parameter is an optional numeric code which allows you to fill-down data
from previous rows/records. A value of zero or no value leaves this option off. Any
other positive or negative integer activates the option (e.g., -2, -1, 1, 2). The dup
option is used with source files where some fields are understood. For example, a
source file might contain the name “FRED”, in the first field of the first record and in
the proceeding records, leave this field blank until records for a new person “JILL”
begin. To deal with this situation, you could activate the fill-down option (value=1) to
have DataExport/DLL fill “FRED” into the fields of the records below the first record
which corresponds to him, then fill “JILL” into the records below the first record
which corresponds to her, etc.

The name parameter is a string providing the name of the column/field and is only
required for database and mail merge output formats. However, we recommend that
you provide a name for each column/field regardless of the output format for the sake
of consistency and to avoid errors when the parameter is required. DataExport/DLL
simply discards a name if none is required and does not return an error.

Examples:

Definition for a 20-character wide column created from a CSV input file:

COLUMN=20,,,,"AnyField2"

Definition for a 40-character wide column, starting at character position 25 in a fixed
fielded source file, with a text StringType, filled down and a column/field name of
“LastName”:

COLUMN=40,25,9,1,"LastName"

Definition for a 40-character wide column with Year/Month/Day date StringType and
a column/field name of “DateField3” created from a CSV source:

COLUMN=10,,5,,"DateField3"

Related Functions: REFPT, TAG

INFILE (Required in EDF or command line)

Syntax: INFILE="string"[,fielddel#,stringdel#]

66 •• Appendix B: EDF Statements and Format DataExport Version 6

Description: This statement is required if no input file is specified in the CmdLine
parameter of the DXLaunchEngine function. If a source file is specified in both an
INFILE statement and the CmdLine parameter, the CmdLine definition takes
precedence.

The string parameter specifies the name of the source file—either a fixed fielded or a
CSV file. The string field specifies the name and path, if required, of the source data
file to be translated.

The fielddel# and stringdel# are optional parameters used for translation of a
CSV file. The fielddel# parameter is the ASCII number of the field delimiter (default
value is 44=“,”) and the stringdel# is the ASCII number of the string delimiter
(default value is 34=<">). The string delimiter is the character is used to enclose text
strings in a CSV source file, (e.g., "1001 North St., Ste. A").

Example:

INFILE="c:\data\rdata1.csv",44,34

Related Functions: OUTFILE

OUTFILE (Required in EDF or command line)

Syntax: OUTFILE="string","filetype"

Description: This statement is required if no output file is specified in the CmdLine
parameter of the DXLaunchEngine function. If an output file is specified in both an
OUTFILE statement and the CmdLine parameter, the CmdLine definition takes
precedence.

The string parameter specifies the name of the output file—either a fixed fielded or a
CSV file. The string field also includes the full path of the output file to be written.
A file extension for the file name is not required and will be provided automatically.

The filetype parameter is a string code that specifies the output file format using a
FileType code (see “FileTypes” in Appendix A).

Examples:

OUTFILE="c:\data\output\my-sheet",XL5

OUTFILE="c:\data\output\my-db.mdb",MDB

Related Functions: INFILE

TITLE

Syntax: TITLE=startrow,endrow

Description: This optional statement defines lines in your source file as title
rows/lines for spreadsheet or text file. This function essentially takes the lines you
specify in the source file and writes them, as-is, into the first cell of the spreadsheet
row that DataExport/DLL is currently writing. The TITLE function is useful for
translating titles from ASCII reports into a recognizable equivalent in a spreadsheet.
Title lines are not output to database formats.

The startrow parameter is a required number (base 1) that specifies the row/line
where the title information starts.

DataExport Version 6 Appendix B: EDF Statements and Format •• 67

The endrow parameter is a required number (base 1) that specifies the row/line where
the title information ends.

Examples:

TITLE=1,1

TITLE=2,3

Related Functions: HEADING

HEADING

Syntax: HEADING=startrow,endrow

Description: This optional statement allows you to use lines in your source file to
define headings for columns in a spreadsheet or text file. This function takes delimited
or fixed field information from the source file and writes it into the top of each row in a
spreadsheet as text, regardless of the definition of the data in the COLUMN. Heading
lines are not output to database formats.

The startrow parameter is a required number (base 1) that specifies the row/line
where the heading information starts.

The endrow parameter is a required number (base 1) that specifies the row/line where
the heading information ends.

Examples:

HEADING=1,1

HEADING=2,3

Related Functions: TITLE

INCLUDE

Syntax: INCLUDE="string",#lines[,startpos]

Description: This optional statement is used to selectively translate lines in the
source file based on the occurrence of a text string. This function is most useful when
translating a report where only certain lines contain needed data. Multiple include
statements can be used to select lines in the source file up to a maximum of 100
statements.

Note: Using an include statement changes the way DataExport/DLL translates a file.
By default, the library translates all lines in a source file. If an INCLUDE statement is
placed in the EDF, only lines which match the criteria of INCLUDE statements (or are
declared as a TITLE or HEADING) will be translated.

The string parameter is required and specifies the alphanumeric text to be used as
criteria for including lines. This parameter is case sensitive and can contain wildcard
characters:

^ (caret) Any number 0 through 9

! (exclamation) Any character except 0 through 9

~ (tilde) Any character except blank

_ (underscore) Any character including blank

68 •• Appendix B: EDF Statements and Format DataExport Version 6

These wildcards are used for single characters only. For example, in order to
INCLUDE a line with the string “AC-235”, the wildcard string should read “!!-^^^”.

The #lines parameter is required and specifies the total number of lines to be
included when the string parameter is found. For example, a #lines value of 3, will
cause DataExport/DLL to translate a line which contains the string value, plus two
additional lines after it.

The startpos parameter is an optional character position number that allows you to
include a line only when the string text occurs at a specific character position. If
startpos is zero or not defined, the INCLUDE statement applies to lines which
contain the string anywhere on the line.

Examples:

INCLUDE="AREA-01”,1

INCLUDE="CHICAGO”,3,14

Related Functions: COLUMN, TAG, EXCLUDE

EXCLUDE

Syntax: EXCLUDE="string",#lines[,startpos]

Description: This optional statement is used to selectively ignore lines in the source
file based on the occurrence of a text string. This function is most useful when
translating a text report where certain lines of data are not needed. Multiple exclude
statements can be used to ignore lines in the source file up to a maximum of 100
statements.

The string parameter is required and specifies the alphanumeric text to be used as
criteria for excluding lines. This parameter is case sensitive and can contain wildcard
characters:

^ (caret) Any number 0 through 9

! (exclamation) Any character except 0 through 9

~ (tilde) Any character except blank

_ (underscore) Any character including blank

These wildcards are used for single characters only. For example, in order to
EXCLUDE a line with the string “AC-235”, the wildcard string should read “!!-^^^”.

The #lines parameter is required and specifies the total number of lines to be
excluded when the string parameter is found. For example, a #lines value of 3, will
cause DataExport/DLL to ignore a line which contains the string value, plus two
additional lines after it.

The startpos parameter is an optional character position number that allows you to
exclude a line only when the string text occurs at a specific character position. If
startpos is zero or not defined, the INCLUDE statement applies to lines which
contain the string anywhere on the line.

Examples:

EXCLUDE="AREA-01",1

EXCLUDE="CHICAGO",3,14

Related Functions: COLUMN, INCLUDE

DataExport Version 6 Appendix B: EDF Statements and Format •• 69

PAUSE

Syntax: PAUSE="string"[,startpos]

Description: This optional statement stops translation of a source file based on the
occurrence of a text string. This function and the RESUME statement are typically
used to translate text reports where only a particular section (or sections) are needed.

The string parameter is required and specifies the alphanumeric text to be used as
criteria for stopping translation of the input file. This parameter is case sensitive and
can contain wildcard characters:

^ (caret) Any number 0 through 9

! (exclamation) Any character except 0 through 9

~ (tilde) Any character except blank

_ (underscore) Any character including blank

These wildcards are used for single characters only. For example, to create a wildcard
string that will find the text string “AC-235”, the wildcard string should read “!!-^^^”.

The startpos parameter is an optional character position number that allows you to
pause translation only when the string text occurs at a specific character position. If
startpos is zero or not defined, the INCLUDE statement applies to lines which
contain the string anywhere on the line.

Examples:

PAUSE="End of Section 2"

PAUSE="NY",5

Related Functions: RESUME

RESUME

Syntax: RESUME="string"[,startpos]

Description: This optional statement re-starts translation of a source file after a
PAUSE, based on the occurrence of a text string. This function and the PAUSE
statement are typically used to translate text reports where only a particular section
(or sections) are needed.

The string parameter is required and specifies the alphanumeric text to be used as
criteria for re-starting translation of the input file. This parameter is case sensitive and
can contain wildcard characters:

^ (caret) Any number 0 through 9

! (exclamation) Any character except 0 through 9

~ (tilde) Any character except blank

_ (underscore) Any character including blank

These wildcards are used for single characters only. For example, to create a wildcard
string that will find the text string “AC-235”, the wildcard string should read “!!-^^^”.

The startpos parameter is an optional character position number that allows you to
resume translation only when the string text occurs at a specific character position.

70 •• Appendix B: EDF Statements and Format DataExport Version 6

If startpos is zero or not defined, the INCLUDE statement applies to lines which
contain the string anywhere on the line.

Examples:

RESUME="Section 2"

RESUME="NC",5

Related Functions: PAUSE

REFPT

Syntax: REFPT="string",startpos

Description: This optional statement provides a function for extracting positionally
related data fields and is used exclusively for translating ASCII report files. REFPT
defines a Reference Point in a report file which is used for locating and extracting data
from fields. This function is used for extracting data from a report where information
for a record is spread out over several lines. This type of report is equivalent to
printing out records in a form or from a viewer in a database.

The REFPT function sets a text landmark for each record by identifying a text string
that appears in the same visual location in the file for each record, usually in the first
line of a multi-line record. After a REFPT, or Reference Point, is established, fields
within a multi-line record can be defined using TAG statements.

TAG-ed fields are not automatically written to the output file. Once a Reference Point
is found in the input file, its corresponding TAGs are read into memory and are only
output when an included line (See INCLUDE above) is encountered. When this
occurs, TAG-ed fields are written into their own virtual columns/fields at the
beginning of the each row/record. An included line does not have to contain any
defined COLUMNs in order for the TAG information to be output.

Note: A maximum of 5 REFPT statements can be made in an EDF file. TAG statements
must immediately follow the REFPT statements with which they are associated. There
is no limit to the number of TAGs that can be associated with a single REFPT.
However, the maximum total number of TAG and COLUMN statements cannot exceed
255.

The string parameter is required and specifies the alphanumeric text to be used as
criteria for identifying a Reference Point in the input file. This parameter is case
sensitive and can contain wildcard characters:

^ (caret) Any number 0 through 9

! (exclamation) Any character except 0 through 9

~ (tilde) Any character except blank

_ (underscore) Any character including blank

These wildcards are used for single characters only. For example, to create a wildcard
string that will find the text string “AC-235”, the wildcard string should read “!!-^^^”.

The startpos parameter is a required character position number that specifies the
first character where the string text occurs.

Examples:

REFPT="EMPLOYEE:",1

DataExport Version 6 Appendix B: EDF Statements and Format •• 71

REFPT="JOB#:",5

Related Functions: TAG, INCLUDE

TAG

Syntax: TAG=linesdown,startpos,width[,type[,"name"]]

Description: This statement is used in conjunction with the REFPT statement for
extracting positionally related data fields and is used exclusively for translating ASCII
report files. When used with a REFPT statement, a TAG defines the width and
character position—defined in relationship to the preceding REFPT—of a field in a
set of multi-line records.

TAGs are defined in terms of the number of lines down from the preceding REFPT
and character position on that line. TAGs can overlap each other and a TAG can even
be defined over the REFPT it is built from.

Note: The total number of TAGs and COLUMNs cannot exceed 255.

The linesdown parameter is a required number that defines the number of lines
down from the preceding REFPT where the TAG field begins. If the field occurs on
the same line as REFPT this variable is set to zero.

The startpos parameter is a required character position number that specifies the
first character position of the TAG field.

The width parameter is a required number which defines the total character width of
the TAG field. This width should be set to the maximum width that can occur in this
field.

The type parameter is an optional numeric code which identifies the type of data
contained in the TAG. The type is a numeric code corresponding to the
“StringTypes” defined in Appendix A. If this parameter is not provided,
DataExport/DLL will read the first cell of the column/field in the source file, attempt to
format the column as numeric values (DXString_Default = 0) and, if that fails, format it
as text strings (DXString_Text = 1).

The name parameter is a string providing the name of the column/field for the TAG
and is only required for database and mail merge output formats. However, we
recommend that you provide a name regardless of the output format for the sake of
consistency and to avoid errors when the parameter is required. DataExport/DLL
simply discards a name if none is required and does not return an error.

Examples:

TAG=2,10,14,,"AnyField"

TAG=0,17,8,5,"DateField3"

Related Functions: REFPT, COLUMN

UDD

Syntax: UDD=fielddel#[,stringdel#]

Description: This optional statement defines the delimiters for a custom-delimited
ASCII output file. This statement is only needed if you are using the UDD DataType
(see “DataTypes,” Appendix A) for your output file.

72 •• Appendix B: EDF Statements and Format DataExport Version 6

The fielddel# parameter is a required numeric code identifying the ASCII character
which separates the cells/fields of data in the UDD output file. In a CSV file, this
character is a comma “,”. The fielddel# is provided as its ASCII number without
leading zeros. For example, a comma’s ASCII number is 0044 and is provided as “44”.
The default value for fielddel# is 44.

The stringdel# parameter is a optional numeric code identifying the ASCII
character which marks the boundaries of a text string in the UDD output file. In a CSV
file, this character is a straight quotation mark <">. The fielddel# is provided as its
ASCII number without leading zeros. For example, a straight quotation mark ’s ASCII
number is 0034 and is provided as “34”. The default value for stringdel# is 34. If
you do not require a string delimiter, either omit a value or use zero “0”.

Examples:

UDD=44,34

UDD=59,39

Related Functions: None

TABLENAME

Syntax: TABLENAME="string"

Description: This optional statement specifies the name of a Table in Access. This
statement is only used when creating an Access output file.

The string parameter is a required string which contains the name of the table to be
written in the Access database. Spaces are allowed and the maximum length is 64
characters. The default name for a table is “Table1” if none is specified.

Examples:

TABLENAME="Table_1-X"

TABLENAME="Joe’s Output Table"

Related Functions: None

SHEETNAME

Syntax: SHEETNAME="string"

Description: This optional statement specifies the name of a Sheet in an Excel
workbook. This statement is only used if you are creating an Excel 5.0 or later output
file.

The string parameter is a required string which contains the name of the sheet to be
written in the Excel workbook. Spaces are allowed. The default name for a sheet is
“Sheet1”.

Examples:

SHEETNAME="Sheet_1-X"

SHEETNAME="Rob’s Test Sheet"

Related Functions: None

DataExport Version 6 Appendix B: EDF Statements and Format •• 73

CURRENCY

Syntax: CURRENCY="string"

Description: This optional statement specifies the character(s) which should be
interpreted as a currency symbol. This option is useful for translation of reports with
non-US currency. The default currency symbol is “$”.

The string parameter is a required text string containing the ASCII characters to be
interpreted as a currency symbol in the input file.

Examples:

CURRENCY="¥"

CURRENCY="£"

CURRENCY="DM"

Related Functions: THOUSAND, DECIMAL

THOUSAND

Syntax: THOUSAND="string"

Description: This optional statement specifies the character used as the thousands
separator in numbers over 999 (e.g., the “,” in 1,000). The default thousands separator
is “,”. In many European countries, the thousands separator is a period “.” or a space
“ ”.

The string parameter is a required text string containing the ASCII character to be
interpreted as a thousands separator in the input file.

Examples:

THOUSAND=","

THOUSAND="."

Related Functions: DECIMAL, CURRENCY

DECIMAL

Syntax: DECIMAL="string"

Description: This optional statement specifies the character used as the decimal
character in numbers (e.g., the “.” in 0.001). The default decimal character is a period
“.”. In many European countries, the decimal separator is a comma “,”.

The string parameter is a required text string containing the ASCII character to be
interpreted as a decimal character in the input file.

Examples:

DECIMAL="."

DECIMAL=","

Related Functions: THOUSAND, CURRENCY

74 •• Appendix B: EDF Statements and Format DataExport Version 6

CODEPAGE

Syntax: CODEPAGE=codepage

Description: This optional statement specifies the ASCII code page to be used in the
interpretation of the input file. This setting is only relevant when creating Lotus 1-2-3
spreadsheets.

A code page determines how the characters above 128 are interpreted and is usually
specific to a language or country. Except for Lotus spreadsheets, all file formats
supported by DataExport/DLL use the system settings of the end user’s machine to
deal with code pages.

The codepage parameter is a required numeric code which identifies the code page to
be used in the interpretation of a file. The default page is the US code page (437).

US ASCII 437

Multilingual 850

Portuguese 860

Canadian French 863

Nordic 865

Examples:

CODEPAGE=437

CODEPAGE=850

Related Functions: None

CUSTOMDATE

Syntax: CUSTOMDATE="string"

Description: This optional statement specifies how to interpret a non-delimited
numeric date in the input file. Custom date interpretation is only used on
column/fields in an input file that are defined as StringType 10
(DXString_Date_Custom) in the type parameter of a COLUMN statement.

The string parameter is a required string which specifies the format of a non-
delimited date with a combination of the letters “Y” for year, “M” for month and “D”
for day. The default custom date is YYMMDD.

Examples:

CUSTOMDATE="YYMMDD"

CUSTOMDATE="MMDDYYYY"

Related Functions: COLUMN

CENTURY

Syntax: CENTURY=yearno

Description: This optional statement defines the assumed century in a two-digit year.
Any two-digit year lower that the provided value is interpreted as 20xx, while any

DataExport Version 6 Appendix B: EDF Statements and Format •• 75

higher value is interpreted as 19xx. For example, with the default value of “50”, the
year “95” is interpreted as “1995”, however, a year of “49” is interpreted as “2049”.

The yearno parameter is a required number that defines the cut-off year for
interpreting a date as 19xx or 20xx.

Examples:

CENTURY=50

CENTURY=70

Related Functions: CUSTOMDATE, COLUMN

MONTHS

Syntax: MONTHS="string1", ... ,"string12"

Description: This optional statement defines the month names to be used in
interpreting dates. This function is useful when translating reports that contain non-
US month names in dates. US month names are the default values
("January","February", ... ,"December") for months.

The string1–12 parameters are the full names of months to be used in date
interpretation. Full names are required for interpretation of both abbreviated months
and complete month names.

Example:

MONTHS="January","February","March","April","May",
"June","July","August","September","October",
"November","December"

Related Functions: COLUMN

ADJUSTWIDTH

Syntax: ADJUSTWIDTH=x

Description: This optional statement adds one character space to the width of each
column in the output file so that the data visually “fits” inside the column. This
option is usually only useful for fixed field input files which are closely spaced.

The x parameter is a required numeric code of 0 or 1: off = 0 , on = 1. The default value
is off (0).

Example:

ADJUSTWIDTH=1

Related Functions: None

SKIPMODE

Syntax: SKIPMODE=x

Using an INCLUDE
statement in your EDF
automatically sets
SKIPMODE to 1 (on).

Description: This optional statement allows you to invert the way
DataExport/DLL translates a file. By default, the library translates all lines
in a file (SKIPMODE=0). If SKIPMODE is set to “1”, then only lines that are
specifically INCLUDE-d will be translated.

76 •• Appendix B: EDF Statements and Format DataExport Version 6

The x parameter is a required numeric code of 0 or 1: 0=off , 1=on. The default value
is off (0).

Example:

SKIPMODE=1

Related Functions: INCLUDE

STARTCELL

Syntax: STARTCELL=startrow[,startcol[,startsheet]]

Description: This optional statement is used to specify the cell and sheet in a
spreadsheet file where DataExport/DLL begins writing data. This option is only used
with spreadsheet output files. The default value is the first cell of the first sheet in the
output file.

The startrow parameter is a required number identifying the row of the first cell to
be written to in the spreadsheet.

The startcol parameter is an optional number identifying the column of the first cell
to be written to in the spreadsheet.

The startsheet parameter is an optional number identifying the sheet of the first
cell to be written to in the spreadsheet. This parameter is only used with the Lotus 1-
2-3 v3, 4, 5 and Quattro Pro for Windows output formats.

Examples:

STARTCELL=3

STARTCELL=2,3

STARTCELL=4,2,2

Related Functions: SHEETNAME

SIGNEDOP

Syntax: SIGNEDOP=leading[,"string"]

Description: This optional statement is used to define the interpretation of
mainframe-style signed overpunch numbers in an input file. Signed overpunch
notation uses a single character to indicate positive and negative values 0–9. This
option is only used when you have defined one or more COLUMNs with a type of 10
(DXString_SOP).

The leading parameter is a required numeric code which indicates that signed
overpunch characters are at the beginning of numbers in the source file (1) or at the
end of numbers (0). The default position is that the signed numbers are at the end (0).

The string parameter is an optional string which defines a custom set of signed
overpunch characters. The first ten characters define the positive numbers 0–9 and
the next ten characters define the negative numbers 0–9. The default value is
“0123456789}JKLMNOPQR”.

Examples:

SIGNEDOP=0,"0123456789}JKLMNOPQR"

SIGNEDOP=1,"{ABCDEFGHI}JKLMNOPQR"

DataExport Version 6 Appendix B: EDF Statements and Format •• 77

Related Functions: COLUMN

78 •• Appendix B: EDF Statements and Format DataExport Version 6

EDF Statements Quick Reference

The following is a list of EDF statements, including their parameters and their default
values, if any:

Required Statements

VERSION=1.0

COLUMN=startpos,width[,type[,dup[,"name"]]]

INFILE="string"[,fielddel#,stringdel#]

OUTFILE="string"[,"filetype"]

Optional Statements

TITLE=startrow,endrow

HEADING=startrow,endrow

INCLUDE="string",#lines[,startpos]

EXCLUDE="string",#lines[,startpos]

PAUSE="string",startpos

RESUME="string",startpos

REFPT="string",startpos

TAG=linesdown,startpos,width[,type[,"name"]]

UDD=fielddel#[,stringdel#] (44,34)

TABLENAME="string" (Table1)

SHEETNAME="string" (Sheet1)

CURRENCY="string" ($)

THOUSAND="string" (,)

DECIMAL="string" (.)

CODEPAGE=codepage (437)

CUSTOMDATE="string" (YYMMDD)

CENTURY=yearno (50)

MONTHS="string1", ... ,"string12" ("January","February", ...
,"December")

ADJUSTWIDTH=x (0)

SKIPMODE=x (0)

STARTCELL=startrow[,startcol[,startsheet]] (0,0,0)

SIGNEDOP=leading[,"string"] (0,
"0123456789}JKLMNOPQR")

DataExport Version 6 Appendix B: EDF Statements and Format •• 79

DataExport Version 6 Appendix C: Distribution of the DataExport/DLL Libraries •• 81

Appendix C: Distribution of the
DataExport/DLL Libraries

This appendix describes what DataExport/DLL files are necessary for distribution
with your product. Some format-specific libraries are quite large and can be omitted if
disk space is a consideration. Required libraries are detailed in the “Required
Distribution Files” section. Format-specific libraries are listed in the “Format Support
Libraries” section.

DataExport/DLL Distributable Files
The files listed below are distributable with your product(s). Check the
README.TXT file for any recent changes to this list. Distributing any of any other
files provided with DataExport/DLL not listed here or indicated as distributable in the
README.TXT file that came with this product is a violation of the DataExport/DLL
license agreement.

Files on
Diskette

Directory
Installed to

Name
when
Installed

Description

dxtrans.dl_ Windows
System

dxtrans.dll DataExport/DLL

dxintl.dl_ " dxintl.dll required by
DXTRANS

vb2olecf.dl_ " vb2olecf.dll required by
DXTRANS

vbdb300.dl_ " vbdb300.dll required by
DXTRANS

vbrun300.dl_ " vbrun300.dll required by
DXTRANS

compobj.dl_ " compobj.dll OLE Compound
Object DLL

storage.dl_ " storage.dll OLE Storage DLL

msajt112.dl_ " msajt112.dll Access Jet Engine

82 •• Appendix C: Distribution of the DataExport/DLL Libraries DataExport Version 6

msajt200.dl_ " msajt200.dll Access Jet Engine

pxengwin.dl_ " pxengwin.dll Paradox Engine

As with all Windows shareable DLLs, these libraries should be installed into the
Windows System directory (usually \windows\system). During installation you
should check the internal version numbers of any existing DLLs against the ones you
are installing. To implement version checking, you can use the API in VER.DLL to
copy the files, or use a third party installation program that supports version
checking.

The following sections explain which libraries are required for distribution and which
libraries can be optionally provided for support of additional formats.

Required Distribution Files
A minimum of five DLLs must be distributed with your product in order for
DataExport/DLL to be functional. These files are:

dxtrans.dll DataExport/DLL

dxintl.dll Support library

vb2olecf.dll "

vbdb300.dll "

vbrun300.dll "

Distributing only these files with your product will allow you to output all but a few
of the total number of formats supported by DataExport/DLL. Formats not supported
by this set of libraries are Access, Excel 5.0 and Paradox. These output formats
require additional libraries as explained in the next section.

Format Support Libraries
Additional libraries are required beyond the five core DLLs listed in the previous
section for output of Access 1.1, 2.0; Excel 5.0 and Paradox 3.5, 4.0. The required
libraries for these formats are listed below:

Access msajt112.dll Access Jet Engine
msajt200.dll Access Jet Engine

Excel 5.0 compobj.dll OLE Compound Object dll
storage.dll OLE Storage dll

Paradox pxengwin.dll Paradox Engine

Please note that these libraries—especially those for Access—are quite large (around
625KB compressed). You may have to weigh your users’ need for these formats
against the cost of providing one (or two) additional distribution diskettes with your
product.

DataExport Version 6 Index •• 83

Index

#

ó symbol 16

1

1001 Error code 57
1002 Error code 57
1003 Error code 57
1004 Error code 32, 57
1005 Error code 32, 57
1006 Error code 57
1007 Error code 57
1008 Error code 57
1-2-3 formats 33

A

Access formats 34
DLL support files 78
OLE objects 34
special requirements 16
Table Names 34
TABLENAME statement 69

ADJUSTWIDTH statement 72
Alpha formats 34
API functions 10, 43

Cell-by-Cell output 10
Cell-by-Cell output 44
command-line execution 49
DXClearBuffer 48
DXCloseFile 48
DXDefData 45
DXEnumTypes 44
DXGetNumTypes 43
DXInitTrans 44
DXLaunchEngine 49
DXPutDouble 47
DXPutInt 46

DXPutLong 46
DXPutSingle 46
DXPutString 47
DXWriteBuffer 47
File-Based translation 11, 49
querying supported formats 43
Querying the DLL 10

Application Programming Interface 43
Approach formats 34
ASCII Custom Delimited formats 37
ASCII Delimited formats 36

B

buffer
committing to output file 20
explained 18
initializing 18

C

Cell-by-Cell output 9, 16
API functions 10, 44
example 21
Methods 16

cells
defined 7
writing 19

CENTURY statement 72
Clarion formats 35
Clipper formats 34
closing output files

Cell-by-Cell output 21
CmdLine

differences from DataImport 52
examples 50
parameters 49
syntax 49

CODEPAGE statement 71
column definitions

defined 7
COLUMN statement 24, 62

for CSV input files 24
for fixed field input files 25

columns
declaring with API 17
defined 7
defining 62
output limits 31

Columnwise DIF formats 35, 36
Comma Separated Values formats 36
Comma Separated Variable files

format 23
command-line execution

84 •• Index DataExport Version 6

API functions 49
differences from DataImport 52
examples 50
parameters 49

committing rows/records 20
CompuServe

technical support 3
constants

DataTypes 54
StringTypes 54, 56

CSV files
defining columns/fields 24
format 23, 36

CURRENCY statement 70
Custom Delimited formats 37
CUSTOMDATE statement 71

D

databases
Access formats 34
Clarion formats 35
dBase formats 34
limitations 34
output formats 6, 34
terminology 7

DataExport/DLL
API functions 10
API functions 43
benefits 5
buffer 18
distributable files 77
implementation decisions 8
Installation 1
output format limitations 31
output formats 6
process diagram 8
purpose 5
querying the DLL 14
terminology 7
user interface 13

DataImport
command-line for DLL 49
using DLL as subsitute for 8

DataImport Mask
as substitute for EDF 24

DataTypes 54
and DXPut functions 20
and StringTypes 20

Date interpretation
month names 72
two-digit years 72
undelimited dates 71

dBase formats 34

DECIMAL statement 71
decisions

implementation 8
defining

an EDF 59
columns 62
columns in an EDF 24
columns/fields 17
delimiters for input file 26, 50
delimiters for output file 69
fields 62
fields in an EDF 24
File-Based translation 22
input file in EDF 26
Line Tags 68
output file in EDF 26
output formats 52
Reference Points 67

Delimited ASCII formats 36
delimiters

defining for input file 26, 50
defining for output file 69

dialog boxes
for DataExport/DLL 13

DIF formats 35, 36
distributable files 77

format specific DLLs 78
required 78

DLLs
distributable 77
format specific 78
required 78

double type parameter 43
DXClearBuffer function 18, 48
DXCloseFile function 21, 48
DXData_BOOLEAN constant 54
DXData_BYTE constant 54
DXData_CURRENCY constant 54
DXData_DATE constant 54
DXData_DOUBLE constant 54
DXData_GENERAL constant 54
DXData_INTEGER constant 54
DXData_LONG constant 54
DXData_SINGLE constant 54
DXData_TEXT constant 54
DXData_TIME constant 54
DXDefData function 17, 45

DataType codes 54
example 18

DXENumTypes function 14
DXENumTypes function 44

example 14
DXErr_BadDataType code 56
DXErr_BadStringType code 56

DataExport Version 6 Index •• 85

DXErr_HandleNotValid code 56
DXErr_IndexNotValid code 56
DXErr_NoHandlesAvail code 56
DXErr_OK code 56
DXErr_TooManyRecords code 56, 57
DXGetNumTypes function 14
DXGetNumTypes function 43

example 14
DXInitTrans function 17, 44

example 18
FileType parameter 52

DXLaunchEngine function 28, 49
CmdLine examples 50
example 28

DXPut functions
and DataTypes 20
examples 19

DXPutDouble function 19, 47
DXPutInt function 19, 46
DXPutLong function 19, 46
DXPutSingle function 19, 46
DXPutString function 19, 47
DXString_Caps constant 55
DXString_Date_Custom constant 55
DXString_Date_DMY constant 55
DXString_Date_DY constant 55
DXString_Date_MDY constant 55
DXString_Date_MY constant 55
DXString_Date_YD constant 55
DXString_Date_YM constant 55
DXString_Date_YMD constant 55
DXString_Default constant 55, 56
DXString_Lowercase constant 55
DXString_SOP constant 55
DXString_Text constant 55
DXString_Time constant 55
DXString_Uppercase constant 55
DXTRANS.H

constants 54, 56
DXTRANS.VB

constants 54, 56
DXWriteBuffer function 20, 47
dynamically building dialogs 13

E

EDF
controls 62
creating 23
example 26

EDF format 59
required statements 59

EDF statements 62
ADJUSTWIDTH 72

case sensitivity 59
CENTURY 72
CODEPAGE 71
COLUMN 24, 62
CURRENCY 70
CUSTOMDATE 71
DECIMAL 71
defining columns/fields 24
environment settings 27
examples 60
EXCLUDE 65
HEADING 64
INCLUDE 65
INFILE 26, 63
Line Tags 68
MONTHS 72
OUTFILE 26, 64
PAUSE 66
Quick Reference 75
Reference Points 67
REFPT 67
report translation 27
re-starting translation of lines 67
RESUME 67
SHEETNAME 70
SIGNEDOP 73
SKIPMODE 73
special functions 27
STARTCELL 73
statement order 60
stopping translation of lines 66
TABLENAME 69
TAG 68
THOUSAND 70
TITLE 64
translation settings 27
UDD 69
VERSION 24, 62

environment settings
EDF statements 27

Error Codes 56
Excel formats 32

DLL support files 78
SHEETNAME statement 70
special requirements 16

EXCLUDE statement 65
Export Definition File (EDF) 23, 59

F

fields
declaring with API 17
defined 7
defining 62

86 •• Index DataExport Version 6

output limits 31
writing 19

File-Based translation 9, 22
API functions 11, 49
report translation 27
running a translation 28
specifying input/output files 25
translation settings 27
writing an EDF 23

files
distributable 77

FileType codes 52
filter files

EDF 23
Mask 22, 24

Fixed Field ASCII files
defining columns/fields 25
format 23, 37

fixed length files 23
float type parameter 43
FoxPro formats 34
functions 10
FXD files

format 23

H

headers
defined 7

HEADING statement 64
Help

installation 1
technical support 3

I

IEEE Reals
writing 19

INCLUDE statement 65
INFILE statement 26, 63

examples 26
initializing

buffer 18
output file 17

input files
for file-based translation 23
specifying in EDF 26

input requirements
user interface 16

INSTALL.LOG 3
Installation 1

instructions 1
QuickStart 1
Record 3

integers
writing 19

Integration
using DataExport/DLL 5

Interchange formats
DIF formats 35, 36
limitations 35
output formats 35
SYLK formats 35

interface
for DataExport/DLL 13

L

language
programming 8

limitations
column/field output 31
database formats 34
interchange formats 35
output formats 31
row/record output 32
spreadsheet formats 32
text formats 36
word processing formats 39

Line Tags 68
LONG type parameter 43
Lotus 1-2-3 formats 33
LPLONG type parameter 43
LPSTR type parameter 43

M

Mail Merge formats
Microsoft Word 39
WordPerfect 39

Mask files
as substitute for EDF 24

Memory requirements 1
Methods

Cell-by-Cell output 16
closing output files 21
committing rows/records 20
DXClearBuffer 18
DXCloseFile 21
DXDefData 17
DXENumTypes 14
DXGetNumTypes 14
DXInitTrans 17
DXLaunchEngine 28
DXPutDouble 19
DXPutInt 19
DXPutLong 19
DXPutSingle 19

DataExport Version 6 Index •• 87

DXPutString 19
DXWriteBuffer 20
File-Based translation 23
initializing an output file 17
initializing row/record buffer 18
querying the DLL 14
running a translation 28

Microsoft Word Mail Merge formats 39
MONTHS statement 72
Multiplan formats 35

O

Online support 3
OUTFILE statement 26, 64
output

Cell-by-Cell 9
File-Based 9
process 8

output files
closing 21
initializing 17
specifying in EDF 26
writing to a specific cell 73

output formats 31
Access formats 34
categories 31
Clarion formats 35
CSV formats 36
Custom Delimited formats 37
database formats 34
DataExport/DLL 6
dBase formats 34
DIF formats 35, 36
Excel formats 32
FileType codes 52
Fixed Field ASCII formats 37
interchange formats 35
Lotus 1-2-3 formats 33
Microsoft Word Mail Merge formats 39
practical limits 31
Print Image formats 38
Quattro formats 33
querying the DLL 14
SDF formats 37
spreadsheet formats 32
SYLK formats 35
Symphony formats 33
text formats 36
TSV formats 37
word processing formats 39
WordPerfect Mail Merge formats 39

outputing
rows/records 19

to buffer 19
examples 19

P

Paradox formats
DLL support files 78

parameter Type definitions 43
PAUSE statement 66
Print Image formats 38
PRN formats 38
programming

language requirements 8

Q

Quattro formats 33
querying supported formats 43
querying the DLL

API functions 10
examples 14
for supported formats 14
Methods 14

questions
implementation 8

QuickStart 1

R

RawData Files
for file-based translation 23

README.TXT 3
Real numbers

writing 19
records

committing to output file 20
defined 7
output limits 32
writing 19

redistributable files 77
format specific DLLs 78
required 78

Reference Points 67
REFPT statement 67
Report Translation Statements

EDF 27
required statements

EDF format 59
Requirements

system 1
re-starting translation of lines 67
RESUME statement 67
Return Codes 56
rows

88 •• Index DataExport Version 6

committing to output file 20
defined 7
output limits 32
writing 19

rows/records buffer 18
Rowwise DIF formats 35, 36
Running a translation

File-Based translation 28

S

SDF formats 37
SETUP.EXE 1
Sheet Name

user interface requirements 16
Sheet Names 32
SHEETNAME statement 70
sheets

defined 7
signed integers

writing 19
signed overpunch 73
SIGNEDOP statement 73
SKIPMODE statement 73
source files

for file-based translation 23
Spalding Software

Online 3
Special Function Statements

EDF 27
spreadsheets

Excel formats 32
limitations 32
Lotus 1-2-3 formats 33
output formats 6, 32
Quattro formats 33
Symphony formats 33
terminology 7

Standard Data Format 37
STARTCELL statement 73
starting

output file 17
statements

in EDF format 59
stopping translation of lines 66
strings

writing 19
StringTypes 54, 56

and DataTypes 20
and DXPut functions 20

Support 3
SYLK formats 35
Symbol interpretation

ASCII code page 71

currency 70
decimal character 71
thousands character 70

Symphony formats 33
System requirements 1

T

Tab Separated Values formats 37
Table Name

user interface requirements 16
TABLENAME statement 69
tables

defined 7
TAG statement 68
Technical Support 3
terminology 7
Text formats

CSV formats 36
Custom Delimited formats 37
Fixed Field ASCII formats 37
limitations 36
output formats 36
Print Image formats 38
SDF formats 37
TSV formats 37

text strings
in EDF statements 59

THOUSAND statement 70
TITLE statement 64
ToolKit

purpose 5
translation

Cell-by-Cell 9, 16
File-Based 9, 22
FileTypes 52
process 8
specifying output formats 52

TSV formats 37
Type parameter

for API functions 43

U

UDD statement 69
Uninstall 3
User Defined Delimited formats 37
user interface

for DataExport/DLL 13
input requirements 16
questions 13

DataExport Version 6 Index •• 89

V

VERSION statement 24, 62

W

wildcard characters 65
Windows 1
Word Processing formats

limitations 39
Microsoft Word Mail Merge formats 39
output formats 39
WordPerfect Mail Merge formats 39

Word Processing Text formats 38
WordPerfect Mail Merge formats 39
World Wide Web

technical support 3
writing

EDF 23
EDF format 59
rows/records 19
to buffer 19

examples 19

X

xBase formats 34

Y

years
two-digit 72

	Home (copy):
	Index (master):
	z (master):
	y (master):
	x (master):
	t (master):
	u (master):
	v (master):
	w (master):
	q (master):
	r (master):
	s (master):
	o (master):
	p (master):
	n (master):
	m (master):
	g (master):
	h (master):
	i (master):
	j (master):
	k (master):
	l (master):
	e (master):
	f (master):
	d (master):
	c (master):
	b (master):
	a (master):

